Hydrological controls on heterotrophic soil respiration across an agricultural landscape

Michael J. Castellano, John P. Schmidt, Jason Philip Kaye, Charles Walker, Chris B. Graham, Hangsheng Lin, Curtis James Dell

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

Climate change is expected to increase the intensity of precipitation, but our ability to model the consequences for soil respiration are limited by a lack of data from soils that are saturated and draining. In this study, we used large intact soil columns (28×30cm) to 1) quantify changes in CO2 flux as soils drain from saturated conditions, and 2) to determine which soil water metrics best predict instantaneous maximum CO2 flux. The columns were from three agricultural landscape positions that vary in soil properties. We simulated water table fluctuations that were observed at the field site (and predicted to increase in future climate scenarios) by flooding the columns from bottom to surface and then allowing the columns to drain for 96h while monitoring volumetric soil water content (VWC), water filled pore space (WFPS), water content normalized to field capacity, matric potential, and CO2 flux. Mean cumulative CO2 flux was 4649mg CO2-Cm-2 96h-1. Regardless of landscape position, CO2 flux rates exhibited a single maximum slightly below saturation, near field capacity. This result suggests that many field studies have not captured soil respiration rates when water availability is optimum for heterotrophic respiration. Across landscape positions, matric potential was the most consistent indicator of instantaneous maximum CO2 flux, with maximum fluxes occurring within the narrow range of -0.15 to -4.89kPa. In contrast, instantaneous maximum CO2 flux rates occurred between 95 and 131% of water content normalized to field capacity, 72-97% WFPS, and 29-45% VWC. Thus, our data suggest that instantaneous maximum CO2 flux rates, a key parameter in ecosystem models, can be predicted across an agricultural landscape with diverse soils if matric potential is used as a water scalar.

Original languageEnglish (US)
Pages (from-to)273-280
Number of pages8
JournalGeoderma
Volume162
Issue number3-4
DOIs
StatePublished - May 15 2011

Fingerprint

soil respiration
landscape position
matric potential
field capacity
agricultural land
water content
soil water
pore space
drain
soil water content
water
saturated conditions
soil
soil matric potential
soil column
water availability
water table
soil properties
soil property
respiration

All Science Journal Classification (ASJC) codes

  • Soil Science

Cite this

Castellano, Michael J. ; Schmidt, John P. ; Kaye, Jason Philip ; Walker, Charles ; Graham, Chris B. ; Lin, Hangsheng ; Dell, Curtis James. / Hydrological controls on heterotrophic soil respiration across an agricultural landscape. In: Geoderma. 2011 ; Vol. 162, No. 3-4. pp. 273-280.
@article{2696e039dec44ad8a704665019c02aaa,
title = "Hydrological controls on heterotrophic soil respiration across an agricultural landscape",
abstract = "Climate change is expected to increase the intensity of precipitation, but our ability to model the consequences for soil respiration are limited by a lack of data from soils that are saturated and draining. In this study, we used large intact soil columns (28×30cm) to 1) quantify changes in CO2 flux as soils drain from saturated conditions, and 2) to determine which soil water metrics best predict instantaneous maximum CO2 flux. The columns were from three agricultural landscape positions that vary in soil properties. We simulated water table fluctuations that were observed at the field site (and predicted to increase in future climate scenarios) by flooding the columns from bottom to surface and then allowing the columns to drain for 96h while monitoring volumetric soil water content (VWC), water filled pore space (WFPS), water content normalized to field capacity, matric potential, and CO2 flux. Mean cumulative CO2 flux was 4649mg CO2-Cm-2 96h-1. Regardless of landscape position, CO2 flux rates exhibited a single maximum slightly below saturation, near field capacity. This result suggests that many field studies have not captured soil respiration rates when water availability is optimum for heterotrophic respiration. Across landscape positions, matric potential was the most consistent indicator of instantaneous maximum CO2 flux, with maximum fluxes occurring within the narrow range of -0.15 to -4.89kPa. In contrast, instantaneous maximum CO2 flux rates occurred between 95 and 131{\%} of water content normalized to field capacity, 72-97{\%} WFPS, and 29-45{\%} VWC. Thus, our data suggest that instantaneous maximum CO2 flux rates, a key parameter in ecosystem models, can be predicted across an agricultural landscape with diverse soils if matric potential is used as a water scalar.",
author = "Castellano, {Michael J.} and Schmidt, {John P.} and Kaye, {Jason Philip} and Charles Walker and Graham, {Chris B.} and Hangsheng Lin and Dell, {Curtis James}",
year = "2011",
month = "5",
day = "15",
doi = "10.1016/j.geoderma.2011.01.020",
language = "English (US)",
volume = "162",
pages = "273--280",
journal = "Geoderma",
issn = "0016-7061",
publisher = "Elsevier",
number = "3-4",

}

Hydrological controls on heterotrophic soil respiration across an agricultural landscape. / Castellano, Michael J.; Schmidt, John P.; Kaye, Jason Philip; Walker, Charles; Graham, Chris B.; Lin, Hangsheng; Dell, Curtis James.

In: Geoderma, Vol. 162, No. 3-4, 15.05.2011, p. 273-280.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Hydrological controls on heterotrophic soil respiration across an agricultural landscape

AU - Castellano, Michael J.

AU - Schmidt, John P.

AU - Kaye, Jason Philip

AU - Walker, Charles

AU - Graham, Chris B.

AU - Lin, Hangsheng

AU - Dell, Curtis James

PY - 2011/5/15

Y1 - 2011/5/15

N2 - Climate change is expected to increase the intensity of precipitation, but our ability to model the consequences for soil respiration are limited by a lack of data from soils that are saturated and draining. In this study, we used large intact soil columns (28×30cm) to 1) quantify changes in CO2 flux as soils drain from saturated conditions, and 2) to determine which soil water metrics best predict instantaneous maximum CO2 flux. The columns were from three agricultural landscape positions that vary in soil properties. We simulated water table fluctuations that were observed at the field site (and predicted to increase in future climate scenarios) by flooding the columns from bottom to surface and then allowing the columns to drain for 96h while monitoring volumetric soil water content (VWC), water filled pore space (WFPS), water content normalized to field capacity, matric potential, and CO2 flux. Mean cumulative CO2 flux was 4649mg CO2-Cm-2 96h-1. Regardless of landscape position, CO2 flux rates exhibited a single maximum slightly below saturation, near field capacity. This result suggests that many field studies have not captured soil respiration rates when water availability is optimum for heterotrophic respiration. Across landscape positions, matric potential was the most consistent indicator of instantaneous maximum CO2 flux, with maximum fluxes occurring within the narrow range of -0.15 to -4.89kPa. In contrast, instantaneous maximum CO2 flux rates occurred between 95 and 131% of water content normalized to field capacity, 72-97% WFPS, and 29-45% VWC. Thus, our data suggest that instantaneous maximum CO2 flux rates, a key parameter in ecosystem models, can be predicted across an agricultural landscape with diverse soils if matric potential is used as a water scalar.

AB - Climate change is expected to increase the intensity of precipitation, but our ability to model the consequences for soil respiration are limited by a lack of data from soils that are saturated and draining. In this study, we used large intact soil columns (28×30cm) to 1) quantify changes in CO2 flux as soils drain from saturated conditions, and 2) to determine which soil water metrics best predict instantaneous maximum CO2 flux. The columns were from three agricultural landscape positions that vary in soil properties. We simulated water table fluctuations that were observed at the field site (and predicted to increase in future climate scenarios) by flooding the columns from bottom to surface and then allowing the columns to drain for 96h while monitoring volumetric soil water content (VWC), water filled pore space (WFPS), water content normalized to field capacity, matric potential, and CO2 flux. Mean cumulative CO2 flux was 4649mg CO2-Cm-2 96h-1. Regardless of landscape position, CO2 flux rates exhibited a single maximum slightly below saturation, near field capacity. This result suggests that many field studies have not captured soil respiration rates when water availability is optimum for heterotrophic respiration. Across landscape positions, matric potential was the most consistent indicator of instantaneous maximum CO2 flux, with maximum fluxes occurring within the narrow range of -0.15 to -4.89kPa. In contrast, instantaneous maximum CO2 flux rates occurred between 95 and 131% of water content normalized to field capacity, 72-97% WFPS, and 29-45% VWC. Thus, our data suggest that instantaneous maximum CO2 flux rates, a key parameter in ecosystem models, can be predicted across an agricultural landscape with diverse soils if matric potential is used as a water scalar.

UR - http://www.scopus.com/inward/record.url?scp=79955463006&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79955463006&partnerID=8YFLogxK

U2 - 10.1016/j.geoderma.2011.01.020

DO - 10.1016/j.geoderma.2011.01.020

M3 - Article

VL - 162

SP - 273

EP - 280

JO - Geoderma

JF - Geoderma

SN - 0016-7061

IS - 3-4

ER -