Identification of the atomic-scale defects involved in the negative bias temperature instability in plasma-nitrided p -channel metal-oxide-silicon field-effect transistors

J. P. Campbell, Patrick M. Lenahan, A. T. Krishnan, S. Krishnan

Research output: Contribution to journalArticle

35 Citations (Scopus)

Abstract

We utilize a combination of DC gate-controlled diode recombination current measurements as well as two very sensitive electrically detected magnetic resonance techniques, spin-dependent recombination and spin-dependent tunneling, to identify atomic-scale defects involved in the negative bias temperature instability (NBTI) in 2.3 nm plasma-nitrided Si O2 -based p -channel metal-oxide-silicon field-effect transistors. We demonstrate that the dominating NBTI-induced defect in the plasma-nitrided devices is fundamentally different than those observed in pure Si O2 -based devices. (In pure Si O2 devices, we observe NBTI-induced Pb0 and Pb1 defects.) Our measurements indicate that the NBTI-induced defect in the plasma-nitrided devices extends into the gate dielectric. The defect participates in both spin-dependent recombination and spin-dependent tunneling. The defect also has a density of states which is more narrowly peaked than that of Pb centers near the middle of the band gap. The high sensitivity of our spin-dependent tunneling measurements allow for an identification of the physical and chemical nature of this defect through observations of Si29 hyperfine interactions. We identify these defects as silicon dangling bond defects in which the central silicon is back bonded to nitrogen atoms. We assign these NBTI-induced defects as KN centers because of their similarity to K centers observed in silicon nitride. (The silicon nitride K centers are also silicon dangling bond defects in which the silicon atom is back-bonded to nitrogen atoms.) The defect identification in plasma-nitrided devices helps to explain (1) why NBTI is exacerbated in nitrided devices, (2) conflicting reports of NBTI-induced interface states and/or bulk traps, and (3) fluorine's ineffectiveness in reducing NBTI in nitrided devices.

Original languageEnglish (US)
Article number044505
JournalJournal of Applied Physics
Volume103
Issue number4
DOIs
StatePublished - Mar 7 2008

Fingerprint

silicon transistors
metal oxides
field effect transistors
defects
temperature
silicon
silicon nitrides
nitrogen atoms
fluorine
magnetic resonance

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Cite this

@article{d83dff1b3d9749cdaa874d67792f93ab,
title = "Identification of the atomic-scale defects involved in the negative bias temperature instability in plasma-nitrided p -channel metal-oxide-silicon field-effect transistors",
abstract = "We utilize a combination of DC gate-controlled diode recombination current measurements as well as two very sensitive electrically detected magnetic resonance techniques, spin-dependent recombination and spin-dependent tunneling, to identify atomic-scale defects involved in the negative bias temperature instability (NBTI) in 2.3 nm plasma-nitrided Si O2 -based p -channel metal-oxide-silicon field-effect transistors. We demonstrate that the dominating NBTI-induced defect in the plasma-nitrided devices is fundamentally different than those observed in pure Si O2 -based devices. (In pure Si O2 devices, we observe NBTI-induced Pb0 and Pb1 defects.) Our measurements indicate that the NBTI-induced defect in the plasma-nitrided devices extends into the gate dielectric. The defect participates in both spin-dependent recombination and spin-dependent tunneling. The defect also has a density of states which is more narrowly peaked than that of Pb centers near the middle of the band gap. The high sensitivity of our spin-dependent tunneling measurements allow for an identification of the physical and chemical nature of this defect through observations of Si29 hyperfine interactions. We identify these defects as silicon dangling bond defects in which the central silicon is back bonded to nitrogen atoms. We assign these NBTI-induced defects as KN centers because of their similarity to K centers observed in silicon nitride. (The silicon nitride K centers are also silicon dangling bond defects in which the silicon atom is back-bonded to nitrogen atoms.) The defect identification in plasma-nitrided devices helps to explain (1) why NBTI is exacerbated in nitrided devices, (2) conflicting reports of NBTI-induced interface states and/or bulk traps, and (3) fluorine's ineffectiveness in reducing NBTI in nitrided devices.",
author = "Campbell, {J. P.} and Lenahan, {Patrick M.} and Krishnan, {A. T.} and S. Krishnan",
year = "2008",
month = "3",
day = "7",
doi = "10.1063/1.2844348",
language = "English (US)",
volume = "103",
journal = "Journal of Applied Physics",
issn = "0021-8979",
publisher = "American Institute of Physics Publising LLC",
number = "4",

}

TY - JOUR

T1 - Identification of the atomic-scale defects involved in the negative bias temperature instability in plasma-nitrided p -channel metal-oxide-silicon field-effect transistors

AU - Campbell, J. P.

AU - Lenahan, Patrick M.

AU - Krishnan, A. T.

AU - Krishnan, S.

PY - 2008/3/7

Y1 - 2008/3/7

N2 - We utilize a combination of DC gate-controlled diode recombination current measurements as well as two very sensitive electrically detected magnetic resonance techniques, spin-dependent recombination and spin-dependent tunneling, to identify atomic-scale defects involved in the negative bias temperature instability (NBTI) in 2.3 nm plasma-nitrided Si O2 -based p -channel metal-oxide-silicon field-effect transistors. We demonstrate that the dominating NBTI-induced defect in the plasma-nitrided devices is fundamentally different than those observed in pure Si O2 -based devices. (In pure Si O2 devices, we observe NBTI-induced Pb0 and Pb1 defects.) Our measurements indicate that the NBTI-induced defect in the plasma-nitrided devices extends into the gate dielectric. The defect participates in both spin-dependent recombination and spin-dependent tunneling. The defect also has a density of states which is more narrowly peaked than that of Pb centers near the middle of the band gap. The high sensitivity of our spin-dependent tunneling measurements allow for an identification of the physical and chemical nature of this defect through observations of Si29 hyperfine interactions. We identify these defects as silicon dangling bond defects in which the central silicon is back bonded to nitrogen atoms. We assign these NBTI-induced defects as KN centers because of their similarity to K centers observed in silicon nitride. (The silicon nitride K centers are also silicon dangling bond defects in which the silicon atom is back-bonded to nitrogen atoms.) The defect identification in plasma-nitrided devices helps to explain (1) why NBTI is exacerbated in nitrided devices, (2) conflicting reports of NBTI-induced interface states and/or bulk traps, and (3) fluorine's ineffectiveness in reducing NBTI in nitrided devices.

AB - We utilize a combination of DC gate-controlled diode recombination current measurements as well as two very sensitive electrically detected magnetic resonance techniques, spin-dependent recombination and spin-dependent tunneling, to identify atomic-scale defects involved in the negative bias temperature instability (NBTI) in 2.3 nm plasma-nitrided Si O2 -based p -channel metal-oxide-silicon field-effect transistors. We demonstrate that the dominating NBTI-induced defect in the plasma-nitrided devices is fundamentally different than those observed in pure Si O2 -based devices. (In pure Si O2 devices, we observe NBTI-induced Pb0 and Pb1 defects.) Our measurements indicate that the NBTI-induced defect in the plasma-nitrided devices extends into the gate dielectric. The defect participates in both spin-dependent recombination and spin-dependent tunneling. The defect also has a density of states which is more narrowly peaked than that of Pb centers near the middle of the band gap. The high sensitivity of our spin-dependent tunneling measurements allow for an identification of the physical and chemical nature of this defect through observations of Si29 hyperfine interactions. We identify these defects as silicon dangling bond defects in which the central silicon is back bonded to nitrogen atoms. We assign these NBTI-induced defects as KN centers because of their similarity to K centers observed in silicon nitride. (The silicon nitride K centers are also silicon dangling bond defects in which the silicon atom is back-bonded to nitrogen atoms.) The defect identification in plasma-nitrided devices helps to explain (1) why NBTI is exacerbated in nitrided devices, (2) conflicting reports of NBTI-induced interface states and/or bulk traps, and (3) fluorine's ineffectiveness in reducing NBTI in nitrided devices.

UR - http://www.scopus.com/inward/record.url?scp=40149099155&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=40149099155&partnerID=8YFLogxK

U2 - 10.1063/1.2844348

DO - 10.1063/1.2844348

M3 - Article

AN - SCOPUS:40149099155

VL - 103

JO - Journal of Applied Physics

JF - Journal of Applied Physics

SN - 0021-8979

IS - 4

M1 - 044505

ER -