Identification of the ubiquitin-proteasome pathway in the regulation of the stability of eukaryotic elongation factor-2 kinase

Sonia Arora, Jin-Ming Yang, William N. Hait

Research output: Contribution to journalArticle

32 Citations (Scopus)

Abstract

Eukaryotic elongation factor-2 kinase (eEF-2 kinase) is a highly conserved calcium/calmodulin-dependent enzyme involved in the regulation of protein translation and cell proliferation. Rapid changes in the activity and abundance of eEF-2 kinase have been observed on growth stimulation, and increased enzyme activity is characteristic of malignant cell growth. Yet the mechanism for controlling the turnover of this kinase is unknown. The ubiquitin-proteasome pathway regulates the degradation of many cellular proteins, including transcription factors, cell cycle regulators, and signal transduction proteins. Therefore, we determined whether the ubiquitin-proteasome pathway regulates the turnover of eEF-2 kinase. We found that eEF-2 kinase was a relatively short-lived protein with a half-life of less than 6 hours. eEF-2 kinase was ubiquitinated in vivo as determined by coimmunoprecipitation and polyubiquitin affinity matrix. Incubation of purified eEF-2 kinase with a source of ubiquitination enzymes (rabbit reticulocyte lysate), purified ubiquitin, and ATP revealed the presence of increasing molecular weight species of ubiquitinated eEF-2 kinase. Treatment of cells with MG132, a proteasome inhibitor, inhibited eEF-2 kinase degradation and induced the accumulation of polyubiquitinated forms of the enzyme, resulting in an increase in its half-life. These results suggest involvement of the proteasome in the turnover of the ubiquitinated kinase. Because eEF-2 kinase is chaperoned by heat shock protein 90 (Hsp90), we next determined if disruption of the Hsp90-eEF-2 kinase complex promoted degradation of the kinase. Treatment of cells with geldanamycin, an Hsp90 inhibitor, enhanced ubiquitination of eEF-2 kinase and decreased the half-life of the kinase to less than 2 hours. These results indicate that cellular levels of eEF-2 kinase are maintained by a balance between association with Hsp90 and degradation by the ubiquitin-proteasome pathway. In conclusion, these data show that the turnover of eEF-2 kinase is regulated by the ubiquitin-proteasome pathway and, therefore, modulating the ubiquitination of eEF-2 kinase might control the abundance of this enzyme and have implications in the treatment of certain forms of cancer.

Original languageEnglish (US)
Pages (from-to)3806-3810
Number of pages5
JournalCancer Research
Volume65
Issue number9
DOIs
StatePublished - May 1 2005

Fingerprint

Elongation Factor 2 Kinase
Proteasome Endopeptidase Complex
Ubiquitin
HSP90 Heat-Shock Proteins
Ubiquitination
Phosphotransferases
Half-Life
Enzymes
Polyubiquitin
Proteins
Proteasome Inhibitors

All Science Journal Classification (ASJC) codes

  • Oncology
  • Cancer Research

Cite this

Arora, Sonia ; Yang, Jin-Ming ; Hait, William N. / Identification of the ubiquitin-proteasome pathway in the regulation of the stability of eukaryotic elongation factor-2 kinase. In: Cancer Research. 2005 ; Vol. 65, No. 9. pp. 3806-3810.
@article{78e9364571ed47c6a82e8c002cb1395b,
title = "Identification of the ubiquitin-proteasome pathway in the regulation of the stability of eukaryotic elongation factor-2 kinase",
abstract = "Eukaryotic elongation factor-2 kinase (eEF-2 kinase) is a highly conserved calcium/calmodulin-dependent enzyme involved in the regulation of protein translation and cell proliferation. Rapid changes in the activity and abundance of eEF-2 kinase have been observed on growth stimulation, and increased enzyme activity is characteristic of malignant cell growth. Yet the mechanism for controlling the turnover of this kinase is unknown. The ubiquitin-proteasome pathway regulates the degradation of many cellular proteins, including transcription factors, cell cycle regulators, and signal transduction proteins. Therefore, we determined whether the ubiquitin-proteasome pathway regulates the turnover of eEF-2 kinase. We found that eEF-2 kinase was a relatively short-lived protein with a half-life of less than 6 hours. eEF-2 kinase was ubiquitinated in vivo as determined by coimmunoprecipitation and polyubiquitin affinity matrix. Incubation of purified eEF-2 kinase with a source of ubiquitination enzymes (rabbit reticulocyte lysate), purified ubiquitin, and ATP revealed the presence of increasing molecular weight species of ubiquitinated eEF-2 kinase. Treatment of cells with MG132, a proteasome inhibitor, inhibited eEF-2 kinase degradation and induced the accumulation of polyubiquitinated forms of the enzyme, resulting in an increase in its half-life. These results suggest involvement of the proteasome in the turnover of the ubiquitinated kinase. Because eEF-2 kinase is chaperoned by heat shock protein 90 (Hsp90), we next determined if disruption of the Hsp90-eEF-2 kinase complex promoted degradation of the kinase. Treatment of cells with geldanamycin, an Hsp90 inhibitor, enhanced ubiquitination of eEF-2 kinase and decreased the half-life of the kinase to less than 2 hours. These results indicate that cellular levels of eEF-2 kinase are maintained by a balance between association with Hsp90 and degradation by the ubiquitin-proteasome pathway. In conclusion, these data show that the turnover of eEF-2 kinase is regulated by the ubiquitin-proteasome pathway and, therefore, modulating the ubiquitination of eEF-2 kinase might control the abundance of this enzyme and have implications in the treatment of certain forms of cancer.",
author = "Sonia Arora and Jin-Ming Yang and Hait, {William N.}",
year = "2005",
month = "5",
day = "1",
doi = "10.1158/0008-5472.CAN-04-4036",
language = "English (US)",
volume = "65",
pages = "3806--3810",
journal = "Journal of Cancer Research",
issn = "0099-7013",
publisher = "American Association for Cancer Research Inc.",
number = "9",

}

Identification of the ubiquitin-proteasome pathway in the regulation of the stability of eukaryotic elongation factor-2 kinase. / Arora, Sonia; Yang, Jin-Ming; Hait, William N.

In: Cancer Research, Vol. 65, No. 9, 01.05.2005, p. 3806-3810.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Identification of the ubiquitin-proteasome pathway in the regulation of the stability of eukaryotic elongation factor-2 kinase

AU - Arora, Sonia

AU - Yang, Jin-Ming

AU - Hait, William N.

PY - 2005/5/1

Y1 - 2005/5/1

N2 - Eukaryotic elongation factor-2 kinase (eEF-2 kinase) is a highly conserved calcium/calmodulin-dependent enzyme involved in the regulation of protein translation and cell proliferation. Rapid changes in the activity and abundance of eEF-2 kinase have been observed on growth stimulation, and increased enzyme activity is characteristic of malignant cell growth. Yet the mechanism for controlling the turnover of this kinase is unknown. The ubiquitin-proteasome pathway regulates the degradation of many cellular proteins, including transcription factors, cell cycle regulators, and signal transduction proteins. Therefore, we determined whether the ubiquitin-proteasome pathway regulates the turnover of eEF-2 kinase. We found that eEF-2 kinase was a relatively short-lived protein with a half-life of less than 6 hours. eEF-2 kinase was ubiquitinated in vivo as determined by coimmunoprecipitation and polyubiquitin affinity matrix. Incubation of purified eEF-2 kinase with a source of ubiquitination enzymes (rabbit reticulocyte lysate), purified ubiquitin, and ATP revealed the presence of increasing molecular weight species of ubiquitinated eEF-2 kinase. Treatment of cells with MG132, a proteasome inhibitor, inhibited eEF-2 kinase degradation and induced the accumulation of polyubiquitinated forms of the enzyme, resulting in an increase in its half-life. These results suggest involvement of the proteasome in the turnover of the ubiquitinated kinase. Because eEF-2 kinase is chaperoned by heat shock protein 90 (Hsp90), we next determined if disruption of the Hsp90-eEF-2 kinase complex promoted degradation of the kinase. Treatment of cells with geldanamycin, an Hsp90 inhibitor, enhanced ubiquitination of eEF-2 kinase and decreased the half-life of the kinase to less than 2 hours. These results indicate that cellular levels of eEF-2 kinase are maintained by a balance between association with Hsp90 and degradation by the ubiquitin-proteasome pathway. In conclusion, these data show that the turnover of eEF-2 kinase is regulated by the ubiquitin-proteasome pathway and, therefore, modulating the ubiquitination of eEF-2 kinase might control the abundance of this enzyme and have implications in the treatment of certain forms of cancer.

AB - Eukaryotic elongation factor-2 kinase (eEF-2 kinase) is a highly conserved calcium/calmodulin-dependent enzyme involved in the regulation of protein translation and cell proliferation. Rapid changes in the activity and abundance of eEF-2 kinase have been observed on growth stimulation, and increased enzyme activity is characteristic of malignant cell growth. Yet the mechanism for controlling the turnover of this kinase is unknown. The ubiquitin-proteasome pathway regulates the degradation of many cellular proteins, including transcription factors, cell cycle regulators, and signal transduction proteins. Therefore, we determined whether the ubiquitin-proteasome pathway regulates the turnover of eEF-2 kinase. We found that eEF-2 kinase was a relatively short-lived protein with a half-life of less than 6 hours. eEF-2 kinase was ubiquitinated in vivo as determined by coimmunoprecipitation and polyubiquitin affinity matrix. Incubation of purified eEF-2 kinase with a source of ubiquitination enzymes (rabbit reticulocyte lysate), purified ubiquitin, and ATP revealed the presence of increasing molecular weight species of ubiquitinated eEF-2 kinase. Treatment of cells with MG132, a proteasome inhibitor, inhibited eEF-2 kinase degradation and induced the accumulation of polyubiquitinated forms of the enzyme, resulting in an increase in its half-life. These results suggest involvement of the proteasome in the turnover of the ubiquitinated kinase. Because eEF-2 kinase is chaperoned by heat shock protein 90 (Hsp90), we next determined if disruption of the Hsp90-eEF-2 kinase complex promoted degradation of the kinase. Treatment of cells with geldanamycin, an Hsp90 inhibitor, enhanced ubiquitination of eEF-2 kinase and decreased the half-life of the kinase to less than 2 hours. These results indicate that cellular levels of eEF-2 kinase are maintained by a balance between association with Hsp90 and degradation by the ubiquitin-proteasome pathway. In conclusion, these data show that the turnover of eEF-2 kinase is regulated by the ubiquitin-proteasome pathway and, therefore, modulating the ubiquitination of eEF-2 kinase might control the abundance of this enzyme and have implications in the treatment of certain forms of cancer.

UR - http://www.scopus.com/inward/record.url?scp=18144425142&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=18144425142&partnerID=8YFLogxK

U2 - 10.1158/0008-5472.CAN-04-4036

DO - 10.1158/0008-5472.CAN-04-4036

M3 - Article

C2 - 15867377

AN - SCOPUS:18144425142

VL - 65

SP - 3806

EP - 3810

JO - Journal of Cancer Research

JF - Journal of Cancer Research

SN - 0099-7013

IS - 9

ER -