Impact of casing eccentricity on cement sheath

Kui Liu, Deli Gao, Arash Dahi Taleghani

Research output: Contribution to journalArticle

3 Scopus citations

Abstract

Sustained casing pressure (SCP) in shale gas wells caused by cement sheath failure can have serious impacts on safe and efficient gas production. Considering the fact that horizontal wells are widely used for production from shale, the cementing quality and casing centricity is barely ensured in these wells. Among other indications, the casing eccentricity is identified very often in wells with SCP problems in the Sichuan field in China. Hence, the objective of this study is to analyze the effect of the casing eccentricity on the integrity of the cement sheath. To better understand stress distribution in eccentric cement sheaths, an analytical model is proposed in this paper. By comparing the results of this model with the one's with centric casing, the impacts of the casing eccentricity on the integrity of the cement sheath is analyzed. During fracturing treatments, the casing eccentricity has a little effect on stress distribution in the cement sheath if the well is well cemented and bonded to the formation rock. However, on the contrary, the casing eccentricity may have serious effects on stress distribution if the cementing is done poorly. The debonding of casing-cement-formation interfaces can significantly increase the circumferential stress in the cement sheath. At the thin side of the cement sheath, the circumferential stress could be 2.5 times higher than the thick side. The offset magnitude of the casing eccentricity has little effect on the radial stress in the cement sheath but it can significantly increase the shear stress. We found that the risk of cement failure may be reduced by making the casing string more centralized, or increasing the thickness of the casing. The results provide insights for design practices which may lead to better integrity in shale gas wells.

Original languageEnglish (US)
Article number2557
JournalEnergies
Volume11
Issue number10
DOIs
StatePublished - Oct 2018

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Energy (miscellaneous)
  • Control and Optimization
  • Electrical and Electronic Engineering

Cite this