Impact of the diurnal radiation contrast on the contraction of radius of maximum wind during intensification of Hurricane Edouard (2014)

Xiaodong Tang, Zhe Min Tan, Juan Fang, Erin B. Munsell, Fuqing Zhang

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

This work examines the impacts of the diurnal radiation contrast on the contraction rate of the radius of maximum wind (RMW) during intensification of Hurricane Edouard (2014) through convection-permitting simulations. Rapid contraction of RMW occurs both in the low and midlevels for the control run and the sensitivity run without solar insolation, while the tropical cyclone contracts more slowly in the low levels and later in the midlevels and thereafter fails to intensify continuously in the absence of the night phase, under weak vertical wind shear (4 m s-1). The clouds at the top of the boundary layer absorb solar shortwave heating during the daytime, which enhanced the temperature inversion there and increased the convective inhibition, while nighttime destabilization and moistening in low levels through radiative cooling decrease convective inhibition and favor more convection inside the RMW than in the daytime phase. The budget analysis of the tangential wind tendency reveals that the greater positive radial vorticity flux inside of the RMW is the key RMW contraction mechanism in the boundary layer at night because of the enhanced convection. However, the greater positive vertical advection of tangential wind inside of the RMW dominates the RMW contraction in the midlevels.

Original languageEnglish (US)
Pages (from-to)421-432
Number of pages12
JournalJournal of the Atmospheric Sciences
Volume76
Issue number2
DOIs
StatePublished - 2019

All Science Journal Classification (ASJC) codes

  • Atmospheric Science

Fingerprint Dive into the research topics of 'Impact of the diurnal radiation contrast on the contraction of radius of maximum wind during intensification of Hurricane Edouard (2014)'. Together they form a unique fingerprint.

Cite this