Impacts of the location and number of [Cu(bpy)2]2+ cross-links on the emission photodynamics of [Ru(bpy)3]2+ with pendant oligo(aminoethylglycine) chains

Carl P. Myers, James R. Miller, Mary Elizabeth Williams

Research output: Contribution to journalArticle

15 Scopus citations

Abstract

Multifunctional aminoethylglycine (aeg) derivatized [Ru(bpy) 3]2+ complexes with pendant bipyridine (bpy) ligands coordinate Cu2+ to form coordinative chain cross-links in a "hairpin loop" motif. In this paper, we report the synthesis and characterization of a series of Ru aeg hairpins in which the relative aeg chain length and number of pendant bpy ligands is varied. Reaction of each of these with Cu2+ is monitored using spectrophotometric emission titrations to determine the binding stoichiometry. Coordination of Cu2+ causes quenching of the emissive excited state Ru species; the degree of quenching efficiency depends on the location and number of coordinated Cu ions. The heterometallic structures are fully characterized, and using the quantum yields and time-resolved emission following excitation of the Ru complexes in deoxygenated solutions, the radiative (kr) and nonradiative (k nr) relaxation rates are compared. These data reveal only a shallow decrease in knr with increasing distance between the Ru and Cu complexes. Activation energies, determined from temperature dependent studies of the time-resolved emission, also increase as the Ru-Cu separation increases, resulting in the smaller nonradiative rates. Together, these data are suggestive of excited state electron transfer as the quenching mechanism and demonstrate that metal coordination self-assembles structures made from modular artificial amino acids can provide controlled arrangements of chromophores, electron donors, and electron acceptors to shuttle electrons in a new approach for mimicking photosynthesis.

Original languageEnglish (US)
Pages (from-to)15291-15300
Number of pages10
JournalJournal of the American Chemical Society
Volume131
Issue number42
DOIs
StatePublished - Oct 28 2009

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'Impacts of the location and number of [Cu(bpy)<sub>2</sub>]<sup>2+</sup> cross-links on the emission photodynamics of [Ru(bpy)<sub>3</sub>]<sup>2+</sup> with pendant oligo(aminoethylglycine) chains'. Together they form a unique fingerprint.

  • Cite this