Improved Weil and Tate pairings for elliptic and hyperelliptic curves

Kirsten Eisenträger, Kristin Lauter, Peter L. Montgomery

Research output: Contribution to journalArticle

17 Scopus citations


We present algorithms for computing the squared Weil and Tate pairings on elliptic curves and the squared Tate pairing on hyperelliptic curves. The squared pairings introduced in this paper have the advantage that our algorithms for evaluating them are deterministic and do not depend on a random choice of points. Our algorithm to evaluate the squared Weil pairing is about 20% more efficient than the standard Weil pairing. Our algorithm for the squared Tate pairing on elliptic curves matches the efficiency of the algorithm given by Barreto, Lynn, and Scott in the case of arbitrary base points where their denominator cancellation technique does not apply. Our algorithm for the squared Tate pairing for hyperelliptic curves is the first detailed implementation of the pairing for general hyperelliptic curves of genus 2, and saves an estimated 30% over the standard algorithm.

Original languageEnglish (US)
Pages (from-to)169-183
Number of pages15
JournalLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
StatePublished - Dec 1 2004

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint Dive into the research topics of 'Improved Weil and Tate pairings for elliptic and hyperelliptic curves'. Together they form a unique fingerprint.

  • Cite this