TY - JOUR
T1 - Improving phosphorus availability in soybean meal for broilers by supplemental phytase.
AU - Denbow, D. M.
AU - Ravindran, V.
AU - Kornegay, E. T.
AU - Yi, Z.
AU - Hulet, R. M.
N1 - Copyright:
This record is sourced from MEDLINE/PubMed, a database of the U.S. National Library of Medicine
PY - 1995/11
Y1 - 1995/11
N2 - A 21-d experiment was conducted with day-old male broilers (n=840) to evaluate the effectiveness of supplemental phytase for improving the availability of phytate P in soybean meal when varying levels of P were fed. The semi-purified basal diet (.18% phytate P) contained soybean meal as the only protein source. Seven levels of phytase (0, 200, 400, 600, 800, 1,000, and 1,200 U/kg diet) were added to diets formulated to contain .20, .27, or .34% nonphytate P (nP; or .38, .45, and .52% total P, respectively). The desired levels of nP in the three basal P diets were achieved by adding varying amounts of defluorinated phosphate. A 2:1 Ca:total P ratio was maintained in all diets. Body weight gains and feed intake were improved (P < .001) by phytase at all nP levels, but the magnitude of response was greatest at low nP levels, resulting in an nP by phytase interaction (P < .01). Gain:feed was unaffected by phytase addition. A high mortality (35 to 45%) was observed for the .20 and .27% nP diets without added phytase, but this declined to normal levels with the addition of 200 to 400 U phytase/kg diet. Ash percentage of toes and tibia and shear force and stress of tibia increased with added phytase. These responses clearly show that the phytate-bound P in soybean meal was made more available to broilers by microbial phytase, and the total response was related to the phytase and nP/total P levels. Based on the high R2 values for the second order translog equations, BW gain, feed intake, and toe ash percentage were the most sensitive indicators to assess P availability, followed by tibia force and ash percentage. Derived nonlinear and linear equations for BW gain and toe ash percentage at the two lower nP levels were used to calculate P equivalency values of phytase for inorganic P. Using the average function of P released ( gamma ) by microbial phytase ( chi ) derived with nP levels of .20 and .27% for BW gain and toe ash percentage, gamma = 1.120 - 1.102e-.0027chi, 1 g of P could be released with 821 U of phytase. The amount of P released increased with increasing levels of phytase, but the amount of P released per 100 U of phytase decreased. Released P ranged from 31 to 58% of phytate P for 250 to 1,000 U of phytase/kg of diet.
AB - A 21-d experiment was conducted with day-old male broilers (n=840) to evaluate the effectiveness of supplemental phytase for improving the availability of phytate P in soybean meal when varying levels of P were fed. The semi-purified basal diet (.18% phytate P) contained soybean meal as the only protein source. Seven levels of phytase (0, 200, 400, 600, 800, 1,000, and 1,200 U/kg diet) were added to diets formulated to contain .20, .27, or .34% nonphytate P (nP; or .38, .45, and .52% total P, respectively). The desired levels of nP in the three basal P diets were achieved by adding varying amounts of defluorinated phosphate. A 2:1 Ca:total P ratio was maintained in all diets. Body weight gains and feed intake were improved (P < .001) by phytase at all nP levels, but the magnitude of response was greatest at low nP levels, resulting in an nP by phytase interaction (P < .01). Gain:feed was unaffected by phytase addition. A high mortality (35 to 45%) was observed for the .20 and .27% nP diets without added phytase, but this declined to normal levels with the addition of 200 to 400 U phytase/kg diet. Ash percentage of toes and tibia and shear force and stress of tibia increased with added phytase. These responses clearly show that the phytate-bound P in soybean meal was made more available to broilers by microbial phytase, and the total response was related to the phytase and nP/total P levels. Based on the high R2 values for the second order translog equations, BW gain, feed intake, and toe ash percentage were the most sensitive indicators to assess P availability, followed by tibia force and ash percentage. Derived nonlinear and linear equations for BW gain and toe ash percentage at the two lower nP levels were used to calculate P equivalency values of phytase for inorganic P. Using the average function of P released ( gamma ) by microbial phytase ( chi ) derived with nP levels of .20 and .27% for BW gain and toe ash percentage, gamma = 1.120 - 1.102e-.0027chi, 1 g of P could be released with 821 U of phytase. The amount of P released increased with increasing levels of phytase, but the amount of P released per 100 U of phytase decreased. Released P ranged from 31 to 58% of phytate P for 250 to 1,000 U of phytase/kg of diet.
UR - http://www.scopus.com/inward/record.url?scp=0029397556&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0029397556&partnerID=8YFLogxK
U2 - 10.3382/ps.0741831
DO - 10.3382/ps.0741831
M3 - Article
C2 - 8614692
AN - SCOPUS:0029397556
SN - 0032-5791
VL - 74
SP - 1831
EP - 1842
JO - Poultry Science
JF - Poultry Science
IS - 11
ER -