In-operando observation of helium-irradiation ion effects on surface deuterium retention through LiOH bonding in lithium films on tungsten substrates

A. L. Neff, Jean Paul Allain

Research output: Contribution to journalArticle

Abstract

The plasma surface interactions within a fusion device are one of the limiting factors to long pulse, power generating operation. A plasma facing component material will require effective heat tolerance, minimal erosion yield, and minimal fuel retention properties. Tungsten (W) has been selected as the divertor material for the International Thermonuclear Experimental Reactor (ITER) due to its high thermal conductivity and high sputter threshold. However, when W is exposed to high particle flux (>10 22 ions/m 2 s) at high surface temperatures (>600 °C), the surface will develop defects such as pits, blisters, and nano-structured tendrils, reducing the beneficial properties of W. To overcome this limitation, a more radiation tolerant thin film material could be used, such as lithium (Li). In addition, the lithium film can protect the plasma from high-Z W sputtered atoms. In multiple tokamak devices, a Li wall coating, has improved the plasma performance by reducing fuel recycling from the walls, stabilizing the edge plasma and decreasing the number of edge localized modes (ELMs). Since ELMs help eject impurities from the core plasma, the complete suppression of ELMs is detrimental. Methods to regulate the frequency of ELMs have been investigated using gas puffs. In this work we report a new method to control the ELM frequency by tuning fuel recycling via the intrinsic helium (He) ions produced as ash from the deuterium (D) – tritium (T) fusion reaction. In Li films, one mechanism to retain D is via a chemical interaction between Li, O (oxygen), and D. Previous work has shown that when He ions are introduced with D ions, in a dual beam irradiation of Li films on W, a reduction in the dynamic surface D retention is observed. To further investigate this phenomenon, 1–2 um films of Li on W were exposed to sequential irradiations of D and He. The He fluence was ≈5% of the D (3.3 × 10 20 ions/m 2 ). The energies for the He and D ions were 1000 eV and 250 eV/amu, respectively and samples were exposed at room temperature. The surface chemistry was characterized with x-ray photoelectron spectroscopy (XPS) to determine changes in retention. The XPS scans were conducted in-situ and in-operando for the irradiations. Our results showed a decrease in the surface retention when He follows D ions and little change in the retention when D follows He. This indicates that He breaks the D retention mechanism in Li.

Original languageEnglish (US)
Pages (from-to)463-467
Number of pages5
JournalNuclear Materials and Energy
Volume19
DOIs
StatePublished - May 1 2019

Fingerprint

Helium
Tungsten
Deuterium
Ion bombardment
ion irradiation
Lithium
deuterium
tungsten
lithium
helium
Ions
Substrates
Plasmas
helium ions
Irradiation
Photoelectron spectroscopy
ions
recycling
Ashes
x ray spectroscopy

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Materials Science (miscellaneous)
  • Nuclear Energy and Engineering

Cite this

@article{97f284103c3d4503a465611aeaaafd1a,
title = "In-operando observation of helium-irradiation ion effects on surface deuterium retention through LiOH bonding in lithium films on tungsten substrates",
abstract = "The plasma surface interactions within a fusion device are one of the limiting factors to long pulse, power generating operation. A plasma facing component material will require effective heat tolerance, minimal erosion yield, and minimal fuel retention properties. Tungsten (W) has been selected as the divertor material for the International Thermonuclear Experimental Reactor (ITER) due to its high thermal conductivity and high sputter threshold. However, when W is exposed to high particle flux (>10 22 ions/m 2 s) at high surface temperatures (>600 °C), the surface will develop defects such as pits, blisters, and nano-structured tendrils, reducing the beneficial properties of W. To overcome this limitation, a more radiation tolerant thin film material could be used, such as lithium (Li). In addition, the lithium film can protect the plasma from high-Z W sputtered atoms. In multiple tokamak devices, a Li wall coating, has improved the plasma performance by reducing fuel recycling from the walls, stabilizing the edge plasma and decreasing the number of edge localized modes (ELMs). Since ELMs help eject impurities from the core plasma, the complete suppression of ELMs is detrimental. Methods to regulate the frequency of ELMs have been investigated using gas puffs. In this work we report a new method to control the ELM frequency by tuning fuel recycling via the intrinsic helium (He) ions produced as ash from the deuterium (D) – tritium (T) fusion reaction. In Li films, one mechanism to retain D is via a chemical interaction between Li, O (oxygen), and D. Previous work has shown that when He ions are introduced with D ions, in a dual beam irradiation of Li films on W, a reduction in the dynamic surface D retention is observed. To further investigate this phenomenon, 1–2 um films of Li on W were exposed to sequential irradiations of D and He. The He fluence was ≈5{\%} of the D (3.3 × 10 20 ions/m 2 ). The energies for the He and D ions were 1000 eV and 250 eV/amu, respectively and samples were exposed at room temperature. The surface chemistry was characterized with x-ray photoelectron spectroscopy (XPS) to determine changes in retention. The XPS scans were conducted in-situ and in-operando for the irradiations. Our results showed a decrease in the surface retention when He follows D ions and little change in the retention when D follows He. This indicates that He breaks the D retention mechanism in Li.",
author = "Neff, {A. L.} and Allain, {Jean Paul}",
year = "2019",
month = "5",
day = "1",
doi = "10.1016/j.nme.2019.03.017",
language = "English (US)",
volume = "19",
pages = "463--467",
journal = "Nuclear Materials and Energy",
issn = "2352-1791",
publisher = "Elsevier Limited",

}

TY - JOUR

T1 - In-operando observation of helium-irradiation ion effects on surface deuterium retention through LiOH bonding in lithium films on tungsten substrates

AU - Neff, A. L.

AU - Allain, Jean Paul

PY - 2019/5/1

Y1 - 2019/5/1

N2 - The plasma surface interactions within a fusion device are one of the limiting factors to long pulse, power generating operation. A plasma facing component material will require effective heat tolerance, minimal erosion yield, and minimal fuel retention properties. Tungsten (W) has been selected as the divertor material for the International Thermonuclear Experimental Reactor (ITER) due to its high thermal conductivity and high sputter threshold. However, when W is exposed to high particle flux (>10 22 ions/m 2 s) at high surface temperatures (>600 °C), the surface will develop defects such as pits, blisters, and nano-structured tendrils, reducing the beneficial properties of W. To overcome this limitation, a more radiation tolerant thin film material could be used, such as lithium (Li). In addition, the lithium film can protect the plasma from high-Z W sputtered atoms. In multiple tokamak devices, a Li wall coating, has improved the plasma performance by reducing fuel recycling from the walls, stabilizing the edge plasma and decreasing the number of edge localized modes (ELMs). Since ELMs help eject impurities from the core plasma, the complete suppression of ELMs is detrimental. Methods to regulate the frequency of ELMs have been investigated using gas puffs. In this work we report a new method to control the ELM frequency by tuning fuel recycling via the intrinsic helium (He) ions produced as ash from the deuterium (D) – tritium (T) fusion reaction. In Li films, one mechanism to retain D is via a chemical interaction between Li, O (oxygen), and D. Previous work has shown that when He ions are introduced with D ions, in a dual beam irradiation of Li films on W, a reduction in the dynamic surface D retention is observed. To further investigate this phenomenon, 1–2 um films of Li on W were exposed to sequential irradiations of D and He. The He fluence was ≈5% of the D (3.3 × 10 20 ions/m 2 ). The energies for the He and D ions were 1000 eV and 250 eV/amu, respectively and samples were exposed at room temperature. The surface chemistry was characterized with x-ray photoelectron spectroscopy (XPS) to determine changes in retention. The XPS scans were conducted in-situ and in-operando for the irradiations. Our results showed a decrease in the surface retention when He follows D ions and little change in the retention when D follows He. This indicates that He breaks the D retention mechanism in Li.

AB - The plasma surface interactions within a fusion device are one of the limiting factors to long pulse, power generating operation. A plasma facing component material will require effective heat tolerance, minimal erosion yield, and minimal fuel retention properties. Tungsten (W) has been selected as the divertor material for the International Thermonuclear Experimental Reactor (ITER) due to its high thermal conductivity and high sputter threshold. However, when W is exposed to high particle flux (>10 22 ions/m 2 s) at high surface temperatures (>600 °C), the surface will develop defects such as pits, blisters, and nano-structured tendrils, reducing the beneficial properties of W. To overcome this limitation, a more radiation tolerant thin film material could be used, such as lithium (Li). In addition, the lithium film can protect the plasma from high-Z W sputtered atoms. In multiple tokamak devices, a Li wall coating, has improved the plasma performance by reducing fuel recycling from the walls, stabilizing the edge plasma and decreasing the number of edge localized modes (ELMs). Since ELMs help eject impurities from the core plasma, the complete suppression of ELMs is detrimental. Methods to regulate the frequency of ELMs have been investigated using gas puffs. In this work we report a new method to control the ELM frequency by tuning fuel recycling via the intrinsic helium (He) ions produced as ash from the deuterium (D) – tritium (T) fusion reaction. In Li films, one mechanism to retain D is via a chemical interaction between Li, O (oxygen), and D. Previous work has shown that when He ions are introduced with D ions, in a dual beam irradiation of Li films on W, a reduction in the dynamic surface D retention is observed. To further investigate this phenomenon, 1–2 um films of Li on W were exposed to sequential irradiations of D and He. The He fluence was ≈5% of the D (3.3 × 10 20 ions/m 2 ). The energies for the He and D ions were 1000 eV and 250 eV/amu, respectively and samples were exposed at room temperature. The surface chemistry was characterized with x-ray photoelectron spectroscopy (XPS) to determine changes in retention. The XPS scans were conducted in-situ and in-operando for the irradiations. Our results showed a decrease in the surface retention when He follows D ions and little change in the retention when D follows He. This indicates that He breaks the D retention mechanism in Li.

UR - http://www.scopus.com/inward/record.url?scp=85063772288&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85063772288&partnerID=8YFLogxK

U2 - 10.1016/j.nme.2019.03.017

DO - 10.1016/j.nme.2019.03.017

M3 - Article

AN - SCOPUS:85063772288

VL - 19

SP - 463

EP - 467

JO - Nuclear Materials and Energy

JF - Nuclear Materials and Energy

SN - 2352-1791

ER -