In situ growth of deep-sea octocorals after the Deepwater Horizon oil spill

Fanny Girard, Rafaelina Cruz, Orli Glickman, Tyler Harpster, Charles R. Fisher

Research output: Contribution to journalArticle

Abstract

Although the role of deep-sea corals in supporting biodiversity is well accepted, their ability to recover from anthropogenic impacts is still poorly understood. An important component of recovery is the capacity of corals to grow back after damage. Here we used data collected as part of an image-based long-term monitoring program that started in the aftermath of the Deepwater Horizon oil spill to develop a non-destructive method to measure in situ growth rates of Paramuricea spp. corals and characterize the impact of the spill on growth. About 200 individual coral colonies were imaged every year between 2011 and 2017 at five sites (three that were impacted by the spill and two that were not). Images were then used to test different methods for measuring growth. The most effective method was employed to estimate baseline growth rates, characterize growth patterns, estimate the age of every colony, and determine the effects of impact and coral size on growth. Overall growth rates were variable but low, with average annual growth rates per site ranging from 0.14 to 2.5 cm/year/colony. Based on coral size and growth rates, some colonies are estimated to be over two thousand years old. While coral size did not have an influence on growth, the initial level of total impact in 2011 had a significant positive effect on the proportion of new growth after 2014. However, growth was not sufficient to compensate for branch loss at one of the impacted sites where corals are expected to take an average of 50 years to grow back to their original size. The non-destructive method we developed could be used to estimate the in situ growth rates on any planar octocoral, and would be particularly useful to follow the recovery of corals after impact or assess the effectiveness of Marine Protected Areas.

Original languageEnglish (US)
Article number12
JournalElementa
Volume7
Issue number1
DOIs
StatePublished - Feb 28 2019

All Science Journal Classification (ASJC) codes

  • Oceanography
  • Environmental Engineering
  • Ecology
  • Geotechnical Engineering and Engineering Geology
  • Geology
  • Atmospheric Science

Fingerprint Dive into the research topics of 'In situ growth of deep-sea octocorals after the Deepwater Horizon oil spill'. Together they form a unique fingerprint.

  • Cite this

    Girard, F., Cruz, R., Glickman, O., Harpster, T., & Fisher, C. R. (2019). In situ growth of deep-sea octocorals after the Deepwater Horizon oil spill. Elementa, 7(1), [12]. https://doi.org/10.1525/elementa.349