In situ methods to explore microstructure evolution in chemically derived oxide thin films

Seymen M. Aygün, Patrick Daniels, William J. Borland, Jon Paul Maria

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

In situ residual gas analyzer techniques were used to identify process-property relationships that regulate microstructure evolution in chemical solution-deposited BaTiO3 films. In situ analysis of furnace exhaust gasses enabled quantitative exploration of thermolysis and crystallization reactions and an ability to identify processing parameters that influence the temperature ranges over which they occur. The atmospheric analysis was instrumental in identifying heat treatments that producedoptimally consolidated precursor gels that crystallized into BaTiO3 layers with optimized structure and properties. Slow ramp rates resulted in higher porosity, larger grain size, and a dramatic drop in the capacitor yield. Fast ramp rates produced similar trends; however, the mechanisms were distinct. The effects of oxygen partial pressure were also explored. BaTiO3 grain size increased with increasing pO2, whereas there was no appreciable influence on density and capacitor yield. Optimal firing parameters, i.e., 20 °C/min ramp rate at a pO2 of 10-13 atm, were identified as those that produced an overlap in the temperature ranges of thermolysis and crystallization reactions and thus a precursor gel with a density and compliance that supports crystallization and densification while tolerating the associated volume contraction. This in situ approach to analyze downstream furnacegas is shown to be a generically applicable means to understand synthesismethods that are complicated by simultaneous mechanisms of precursor decomposition, extraction of volatile components, and crystallization.

Original languageEnglish (US)
Pages (from-to)427-436
Number of pages10
JournalJournal of Materials Research
Volume25
Issue number3
DOIs
StatePublished - Mar 2010

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'In situ methods to explore microstructure evolution in chemically derived oxide thin films'. Together they form a unique fingerprint.

Cite this