In Vitro Evaluation of ECG-Synchronized Pulsatile Flow Using the i-cor Diagonal Pump in Neonatal and Pediatric ECLS Systems

Morgan Moroi, Madison Force, Shigang Wang, Allen Kunselman, Akif Undar

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

The objective was to assess the i-cor electrocardiogram-synchronized diagonal pump in terms of hemodynamic energy properties for off-label use in neonatal and pediatric extracorporeal life support (ECLS) circuits. The neonatal circuit consisted of an i-cor pump and console, a Medos Hilite 800 LT oxygenator, an 8Fr arterial cannula, a 10Fr venous cannula, 91 cm of 0.6-cm ID arterial tubing, and 91 cm of 0.6-cm ID venous tubing. The pediatric circuit was identical except it included a 12Fr arterial cannula, a 14Fr venous cannula, and a Medos Hilite 2400 LT oxygenator. Neonatal trials were conducted at 36°C with hematocrit 40% using varying flow rates (200–600 mL/min, 200 mL increments) and postarterial cannula pressures (40–100 mm Hg, 20 mm Hg increments) under nonpulsatile mode and pulsatile mode with various pulsatile amplitudes (1000–4000 rpm, 1000 rpm increments). Pediatric trials were conducted at different flow rates (800–1600 mL/min, 400 mL/min increments). Mean pressure and energy equivalent pressure increased with increasing postarterial cannula pressure, flow rate, and pulsatile amplitude. Physiologic-like pulsatility was achieved between pulsatile amplitudes of 2000–3000 rpm. Pressure drops were greatest across the arterial cannula. Pulsatile flow generated significantly higher total hemodynamic energy (THE) levels than nonpulsatile flow. THE levels at postarterial cannula site increased with increasing postarterial cannula pressure, pulsatile amplitude, and flow rate. No surplus hemodynamic energy (SHE) was generated under nonpulsatile mode. Under pulsatile mode, preoxygenator SHE increased with increasing postarterial cannula pressure and pulsatile amplitude, but decreased with increasing flow rate. The i-cor system can provide nonpulsatile and pulsatile flow for neonatal and pediatric ECLS. Pulsatile amplitudes of 2000–3000 rpm are recommended for use in neonatal and pediatric patients.

Original languageEnglish (US)
Pages (from-to)E127-E140
JournalArtificial organs
Volume42
Issue number7
DOIs
StatePublished - Jul 1 2018

Fingerprint

Life Support Systems
Pulsatile Flow
Pulsatile flow
Extracorporeal Membrane Oxygenation
Pediatrics
Electrocardiography
Hemodynamics
Pumps
Flow rate
Oxygenators
Pressure
Tubing
Electron energy levels
Networks (circuits)
Pressure drop
Cannula
In Vitro Techniques
Labels
Off-Label Use
Hematocrit

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Medicine (miscellaneous)
  • Biomaterials
  • Biomedical Engineering

Cite this

@article{ab459f3b32e746a79d118ca6f6714df6,
title = "In Vitro Evaluation of ECG-Synchronized Pulsatile Flow Using the i-cor Diagonal Pump in Neonatal and Pediatric ECLS Systems",
abstract = "The objective was to assess the i-cor electrocardiogram-synchronized diagonal pump in terms of hemodynamic energy properties for off-label use in neonatal and pediatric extracorporeal life support (ECLS) circuits. The neonatal circuit consisted of an i-cor pump and console, a Medos Hilite 800 LT oxygenator, an 8Fr arterial cannula, a 10Fr venous cannula, 91 cm of 0.6-cm ID arterial tubing, and 91 cm of 0.6-cm ID venous tubing. The pediatric circuit was identical except it included a 12Fr arterial cannula, a 14Fr venous cannula, and a Medos Hilite 2400 LT oxygenator. Neonatal trials were conducted at 36°C with hematocrit 40{\%} using varying flow rates (200–600 mL/min, 200 mL increments) and postarterial cannula pressures (40–100 mm Hg, 20 mm Hg increments) under nonpulsatile mode and pulsatile mode with various pulsatile amplitudes (1000–4000 rpm, 1000 rpm increments). Pediatric trials were conducted at different flow rates (800–1600 mL/min, 400 mL/min increments). Mean pressure and energy equivalent pressure increased with increasing postarterial cannula pressure, flow rate, and pulsatile amplitude. Physiologic-like pulsatility was achieved between pulsatile amplitudes of 2000–3000 rpm. Pressure drops were greatest across the arterial cannula. Pulsatile flow generated significantly higher total hemodynamic energy (THE) levels than nonpulsatile flow. THE levels at postarterial cannula site increased with increasing postarterial cannula pressure, pulsatile amplitude, and flow rate. No surplus hemodynamic energy (SHE) was generated under nonpulsatile mode. Under pulsatile mode, preoxygenator SHE increased with increasing postarterial cannula pressure and pulsatile amplitude, but decreased with increasing flow rate. The i-cor system can provide nonpulsatile and pulsatile flow for neonatal and pediatric ECLS. Pulsatile amplitudes of 2000–3000 rpm are recommended for use in neonatal and pediatric patients.",
author = "Morgan Moroi and Madison Force and Shigang Wang and Allen Kunselman and Akif Undar",
year = "2018",
month = "7",
day = "1",
doi = "10.1111/aor.13103",
language = "English (US)",
volume = "42",
pages = "E127--E140",
journal = "Artificial Organs",
issn = "0160-564X",
publisher = "Wiley-Blackwell",
number = "7",

}

In Vitro Evaluation of ECG-Synchronized Pulsatile Flow Using the i-cor Diagonal Pump in Neonatal and Pediatric ECLS Systems. / Moroi, Morgan; Force, Madison; Wang, Shigang; Kunselman, Allen; Undar, Akif.

In: Artificial organs, Vol. 42, No. 7, 01.07.2018, p. E127-E140.

Research output: Contribution to journalArticle

TY - JOUR

T1 - In Vitro Evaluation of ECG-Synchronized Pulsatile Flow Using the i-cor Diagonal Pump in Neonatal and Pediatric ECLS Systems

AU - Moroi, Morgan

AU - Force, Madison

AU - Wang, Shigang

AU - Kunselman, Allen

AU - Undar, Akif

PY - 2018/7/1

Y1 - 2018/7/1

N2 - The objective was to assess the i-cor electrocardiogram-synchronized diagonal pump in terms of hemodynamic energy properties for off-label use in neonatal and pediatric extracorporeal life support (ECLS) circuits. The neonatal circuit consisted of an i-cor pump and console, a Medos Hilite 800 LT oxygenator, an 8Fr arterial cannula, a 10Fr venous cannula, 91 cm of 0.6-cm ID arterial tubing, and 91 cm of 0.6-cm ID venous tubing. The pediatric circuit was identical except it included a 12Fr arterial cannula, a 14Fr venous cannula, and a Medos Hilite 2400 LT oxygenator. Neonatal trials were conducted at 36°C with hematocrit 40% using varying flow rates (200–600 mL/min, 200 mL increments) and postarterial cannula pressures (40–100 mm Hg, 20 mm Hg increments) under nonpulsatile mode and pulsatile mode with various pulsatile amplitudes (1000–4000 rpm, 1000 rpm increments). Pediatric trials were conducted at different flow rates (800–1600 mL/min, 400 mL/min increments). Mean pressure and energy equivalent pressure increased with increasing postarterial cannula pressure, flow rate, and pulsatile amplitude. Physiologic-like pulsatility was achieved between pulsatile amplitudes of 2000–3000 rpm. Pressure drops were greatest across the arterial cannula. Pulsatile flow generated significantly higher total hemodynamic energy (THE) levels than nonpulsatile flow. THE levels at postarterial cannula site increased with increasing postarterial cannula pressure, pulsatile amplitude, and flow rate. No surplus hemodynamic energy (SHE) was generated under nonpulsatile mode. Under pulsatile mode, preoxygenator SHE increased with increasing postarterial cannula pressure and pulsatile amplitude, but decreased with increasing flow rate. The i-cor system can provide nonpulsatile and pulsatile flow for neonatal and pediatric ECLS. Pulsatile amplitudes of 2000–3000 rpm are recommended for use in neonatal and pediatric patients.

AB - The objective was to assess the i-cor electrocardiogram-synchronized diagonal pump in terms of hemodynamic energy properties for off-label use in neonatal and pediatric extracorporeal life support (ECLS) circuits. The neonatal circuit consisted of an i-cor pump and console, a Medos Hilite 800 LT oxygenator, an 8Fr arterial cannula, a 10Fr venous cannula, 91 cm of 0.6-cm ID arterial tubing, and 91 cm of 0.6-cm ID venous tubing. The pediatric circuit was identical except it included a 12Fr arterial cannula, a 14Fr venous cannula, and a Medos Hilite 2400 LT oxygenator. Neonatal trials were conducted at 36°C with hematocrit 40% using varying flow rates (200–600 mL/min, 200 mL increments) and postarterial cannula pressures (40–100 mm Hg, 20 mm Hg increments) under nonpulsatile mode and pulsatile mode with various pulsatile amplitudes (1000–4000 rpm, 1000 rpm increments). Pediatric trials were conducted at different flow rates (800–1600 mL/min, 400 mL/min increments). Mean pressure and energy equivalent pressure increased with increasing postarterial cannula pressure, flow rate, and pulsatile amplitude. Physiologic-like pulsatility was achieved between pulsatile amplitudes of 2000–3000 rpm. Pressure drops were greatest across the arterial cannula. Pulsatile flow generated significantly higher total hemodynamic energy (THE) levels than nonpulsatile flow. THE levels at postarterial cannula site increased with increasing postarterial cannula pressure, pulsatile amplitude, and flow rate. No surplus hemodynamic energy (SHE) was generated under nonpulsatile mode. Under pulsatile mode, preoxygenator SHE increased with increasing postarterial cannula pressure and pulsatile amplitude, but decreased with increasing flow rate. The i-cor system can provide nonpulsatile and pulsatile flow for neonatal and pediatric ECLS. Pulsatile amplitudes of 2000–3000 rpm are recommended for use in neonatal and pediatric patients.

UR - http://www.scopus.com/inward/record.url?scp=85042349259&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85042349259&partnerID=8YFLogxK

U2 - 10.1111/aor.13103

DO - 10.1111/aor.13103

M3 - Article

C2 - 29473652

AN - SCOPUS:85042349259

VL - 42

SP - E127-E140

JO - Artificial Organs

JF - Artificial Organs

SN - 0160-564X

IS - 7

ER -