Abstract

Tobacco smoking is an etiological factor of ovarian cacner; however, the mechanisms remain largely undefined. Therefore, as an initial investigation, we examined the carcinogenicity and DNA adducts formation in the ovary of mice treated with DB[a,l]P, a tobacco smoke constituent and environmental pollutant. Ovarian tumors in B6C3F1 mice were induced by direct application of DB[a,l]P (24, 12, 6, and 3 nmol/mouse, three times a week for 38 weeks) into the oral cavity of mice. At 6 nmol, DB[a,l]P induced the highest total ovarian tumor incidence (79%), but the incidence of malignancy was only 15%. However, at the dose of 12 nmol, the total ovarian tumor incidence was 75%, and the incidence of malignancy was 65%. In addition to ovarian tumors, at the dose of 24 nmol, DB[a,l]P induced lesions in sites distal from the ovaries including the skin, mammary, lung, and oral tissues, which were rare at doses lower than 24 nmol. Another bioassay was conducted (Figure presented) to detect and quantify DNA adducts induced by DB[a,l]P (24 nmol, three times a week for 5 weeks) in the ovary at 48 h and 1, 2, and 4 weeks after the last administration of DB[a,l]P. DNA was isolated, and the dibenzo[a,l]pyrene-11,12-dihydrodiol-13,14-epoxide (DB[a,l]PDE)-DNA adducts were analyzed by a LC-MS/MS method. DB[a,l]P resulted in the formation of (-)-anti-cis-DB[a,l]PDE-dA and (-)-anti-trans-DB[a,l]PDE-dA adducts, which were 0.8 and 1.6 fmol/10 6 dA, respectively, in ovaries of mice within 48 h, and the level of adducts decreased over a week. Our results indicated that DB[a,l]P can be metabolized to form (-)-anti-DB[a,l]PDE; the latter may, in part, account for DB[a,l]P-induced ovarian cancer. This animal model should assist to better understand the mechanisms, account for the induction of ovarian cancer by tobacco carcinogens, and facilitate the development of chemopreventive agents against ovarian cancer.

Original languageEnglish (US)
Pages (from-to)374-380
Number of pages7
JournalChemical Research in Toxicology
Volume25
Issue number2
DOIs
StatePublished - Feb 20 2012

Fingerprint

DNA Adducts
Ovarian Neoplasms
Tobacco
Tumors
Ovary
Neoplasms
Incidence
Environmental Pollutants
Bioassay
Epoxy Compounds
Smoke
Carcinogens
Skin
Animals
Tissue
Biological Assay
Mouth
dibenzo(a,l)pyrene
DNA
Breast

All Science Journal Classification (ASJC) codes

  • Toxicology

Cite this

@article{c90172b2b4bc4f9690d988bf4639280c,
title = "Induction of ovarian cancer and DNA adducts by dibenzo[a,l]pyrene in the mouse",
abstract = "Tobacco smoking is an etiological factor of ovarian cacner; however, the mechanisms remain largely undefined. Therefore, as an initial investigation, we examined the carcinogenicity and DNA adducts formation in the ovary of mice treated with DB[a,l]P, a tobacco smoke constituent and environmental pollutant. Ovarian tumors in B6C3F1 mice were induced by direct application of DB[a,l]P (24, 12, 6, and 3 nmol/mouse, three times a week for 38 weeks) into the oral cavity of mice. At 6 nmol, DB[a,l]P induced the highest total ovarian tumor incidence (79{\%}), but the incidence of malignancy was only 15{\%}. However, at the dose of 12 nmol, the total ovarian tumor incidence was 75{\%}, and the incidence of malignancy was 65{\%}. In addition to ovarian tumors, at the dose of 24 nmol, DB[a,l]P induced lesions in sites distal from the ovaries including the skin, mammary, lung, and oral tissues, which were rare at doses lower than 24 nmol. Another bioassay was conducted (Figure presented) to detect and quantify DNA adducts induced by DB[a,l]P (24 nmol, three times a week for 5 weeks) in the ovary at 48 h and 1, 2, and 4 weeks after the last administration of DB[a,l]P. DNA was isolated, and the dibenzo[a,l]pyrene-11,12-dihydrodiol-13,14-epoxide (DB[a,l]PDE)-DNA adducts were analyzed by a LC-MS/MS method. DB[a,l]P resulted in the formation of (-)-anti-cis-DB[a,l]PDE-dA and (-)-anti-trans-DB[a,l]PDE-dA adducts, which were 0.8 and 1.6 fmol/10 6 dA, respectively, in ovaries of mice within 48 h, and the level of adducts decreased over a week. Our results indicated that DB[a,l]P can be metabolized to form (-)-anti-DB[a,l]PDE; the latter may, in part, account for DB[a,l]P-induced ovarian cancer. This animal model should assist to better understand the mechanisms, account for the induction of ovarian cancer by tobacco carcinogens, and facilitate the development of chemopreventive agents against ovarian cancer.",
author = "Kun-Ming Chen and Zhang, {Shang Min} and Cesar Aliaga and Yuan-Wan Sun and Timothy Cooper and Krishne Gowda and Junjia Zhu and Shantu Amin and Karam El-Bayoumy",
year = "2012",
month = "2",
day = "20",
doi = "10.1021/tx2004322",
language = "English (US)",
volume = "25",
pages = "374--380",
journal = "Chemical Research in Toxicology",
issn = "0893-228X",
publisher = "American Chemical Society",
number = "2",

}

TY - JOUR

T1 - Induction of ovarian cancer and DNA adducts by dibenzo[a,l]pyrene in the mouse

AU - Chen, Kun-Ming

AU - Zhang, Shang Min

AU - Aliaga, Cesar

AU - Sun, Yuan-Wan

AU - Cooper, Timothy

AU - Gowda, Krishne

AU - Zhu, Junjia

AU - Amin, Shantu

AU - El-Bayoumy, Karam

PY - 2012/2/20

Y1 - 2012/2/20

N2 - Tobacco smoking is an etiological factor of ovarian cacner; however, the mechanisms remain largely undefined. Therefore, as an initial investigation, we examined the carcinogenicity and DNA adducts formation in the ovary of mice treated with DB[a,l]P, a tobacco smoke constituent and environmental pollutant. Ovarian tumors in B6C3F1 mice were induced by direct application of DB[a,l]P (24, 12, 6, and 3 nmol/mouse, three times a week for 38 weeks) into the oral cavity of mice. At 6 nmol, DB[a,l]P induced the highest total ovarian tumor incidence (79%), but the incidence of malignancy was only 15%. However, at the dose of 12 nmol, the total ovarian tumor incidence was 75%, and the incidence of malignancy was 65%. In addition to ovarian tumors, at the dose of 24 nmol, DB[a,l]P induced lesions in sites distal from the ovaries including the skin, mammary, lung, and oral tissues, which were rare at doses lower than 24 nmol. Another bioassay was conducted (Figure presented) to detect and quantify DNA adducts induced by DB[a,l]P (24 nmol, three times a week for 5 weeks) in the ovary at 48 h and 1, 2, and 4 weeks after the last administration of DB[a,l]P. DNA was isolated, and the dibenzo[a,l]pyrene-11,12-dihydrodiol-13,14-epoxide (DB[a,l]PDE)-DNA adducts were analyzed by a LC-MS/MS method. DB[a,l]P resulted in the formation of (-)-anti-cis-DB[a,l]PDE-dA and (-)-anti-trans-DB[a,l]PDE-dA adducts, which were 0.8 and 1.6 fmol/10 6 dA, respectively, in ovaries of mice within 48 h, and the level of adducts decreased over a week. Our results indicated that DB[a,l]P can be metabolized to form (-)-anti-DB[a,l]PDE; the latter may, in part, account for DB[a,l]P-induced ovarian cancer. This animal model should assist to better understand the mechanisms, account for the induction of ovarian cancer by tobacco carcinogens, and facilitate the development of chemopreventive agents against ovarian cancer.

AB - Tobacco smoking is an etiological factor of ovarian cacner; however, the mechanisms remain largely undefined. Therefore, as an initial investigation, we examined the carcinogenicity and DNA adducts formation in the ovary of mice treated with DB[a,l]P, a tobacco smoke constituent and environmental pollutant. Ovarian tumors in B6C3F1 mice were induced by direct application of DB[a,l]P (24, 12, 6, and 3 nmol/mouse, three times a week for 38 weeks) into the oral cavity of mice. At 6 nmol, DB[a,l]P induced the highest total ovarian tumor incidence (79%), but the incidence of malignancy was only 15%. However, at the dose of 12 nmol, the total ovarian tumor incidence was 75%, and the incidence of malignancy was 65%. In addition to ovarian tumors, at the dose of 24 nmol, DB[a,l]P induced lesions in sites distal from the ovaries including the skin, mammary, lung, and oral tissues, which were rare at doses lower than 24 nmol. Another bioassay was conducted (Figure presented) to detect and quantify DNA adducts induced by DB[a,l]P (24 nmol, three times a week for 5 weeks) in the ovary at 48 h and 1, 2, and 4 weeks after the last administration of DB[a,l]P. DNA was isolated, and the dibenzo[a,l]pyrene-11,12-dihydrodiol-13,14-epoxide (DB[a,l]PDE)-DNA adducts were analyzed by a LC-MS/MS method. DB[a,l]P resulted in the formation of (-)-anti-cis-DB[a,l]PDE-dA and (-)-anti-trans-DB[a,l]PDE-dA adducts, which were 0.8 and 1.6 fmol/10 6 dA, respectively, in ovaries of mice within 48 h, and the level of adducts decreased over a week. Our results indicated that DB[a,l]P can be metabolized to form (-)-anti-DB[a,l]PDE; the latter may, in part, account for DB[a,l]P-induced ovarian cancer. This animal model should assist to better understand the mechanisms, account for the induction of ovarian cancer by tobacco carcinogens, and facilitate the development of chemopreventive agents against ovarian cancer.

UR - http://www.scopus.com/inward/record.url?scp=84859783874&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84859783874&partnerID=8YFLogxK

U2 - 10.1021/tx2004322

DO - 10.1021/tx2004322

M3 - Article

C2 - 22107356

AN - SCOPUS:84859783874

VL - 25

SP - 374

EP - 380

JO - Chemical Research in Toxicology

JF - Chemical Research in Toxicology

SN - 0893-228X

IS - 2

ER -