Inflation driven by scalar field and solid matter

Peter Mészáros

Research output: Contribution to journalArticlepeer-review

Abstract

Solid inflation is a cosmological model where inflation is driven by fields which enter the Lagrangian in the same way as body coordinates of a solid matter enter the equation of state, spontaneously breaking spatial translational and rotational symmetry. We construct a simple generalization of this model by adding a scalar field with standard kinetic term to the action. In our model, the scalar power spectrum and the tensor-to-scalar ratio do not differ from the ones predicted by the solid inflation qualitatively, if the scalar field does not dominate the solid matter. The same applies also for the size of the scalar bispectrum measured by the nonlinearity parameter, although our model allows it to have different shapes. The tensor bispectra predicted by the two models do not differ from each other in the leading order of the slow-roll approximation. In the case when contribution of the solid matter to the stress-energy tensor is much smaller than the contribution from the scalar field, the tensor-to-scalar ratio and the nonlinearity parameter are amplified by factors ϵ -1 and ϵ -2 , respectively.

Original languageEnglish (US)
Article number1950072
JournalInternational Journal of Modern Physics D
Volume28
Issue number4
DOIs
StatePublished - Mar 1 2019

All Science Journal Classification (ASJC) codes

  • Mathematical Physics
  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'Inflation driven by scalar field and solid matter'. Together they form a unique fingerprint.

Cite this