Influence of increased plasma osmolality on sympathetic outflow during apnea

Jody L. Greaney, Chester A. Ray, Allen V. Prettyman, David G. Edwards, William B. Farquhar

Research output: Contribution to journalArticlepeer-review

13 Scopus citations


Animal models have shown that peripheral chemoreceptors alter their firing patterns in response to changes in plasma osmolality, which, in turn, may modulate sympathetic outflow. The purpose of this study was to test the hypothesis that increases in plasma osmolality augment muscle sympathetic nerve activity (MSNA) responses to chemoreceptor activation. MSNA was recorded from the peroneal nerve (microneurography) during a 23-min intravenous hypertonic saline infusion (3% NaCl; HSI). Chemoreceptor activation was elicited by voluntary end-expiratory apnea. MSNA responses to end-expiratory apnea were calculated as the absolute increase from the preceding baseline period. Plasma osmolality significantly increased from pre- to post-HSI (284 ± 1 to 290 ± 1 mOsm/kg H2O; P < 0.01). There was a significant overall effect of osmolality on sympathetic activity (P < 0.01). Duration of the voluntary end-expiratory apnea was not different after HSI (pre = 40 ± 5 s; post = 41 ± 4 s). MSNA responses to end-expiratory apnea were not different after HSI, expressed as an absolute change in burst frequency (n = 11; pre = 8 ± 2; post = 11 ± 1 burst/min) and as a percent increase in total activity (pre = 51 ± 4% AU; post = 53 ± 4% AU). A second group of subjects (n = 8) participated in 23-min volume/time-control intravenous isotonic saline infusions (0.9% NaCl). Isotonic saline volume-control infusions yielded no change in plasma osmolality or MSNA at rest. Furthermore, MSNA responses to apnea following isotonic saline infusion were not different. In summary, elevated plasma osmolality increased MSNA at rest and during apnea, but contrary to the hypothesis, MSNA responsiveness to apnea was not augmented. Therefore, this study does not support a neural interaction between plasma osmolality and chemoreceptor stimulation.

Original languageEnglish (US)
Pages (from-to)R1091-R1096
JournalAmerican Journal of Physiology - Regulatory Integrative and Comparative Physiology
Issue number4
StatePublished - Oct 2010

All Science Journal Classification (ASJC) codes

  • Physiology
  • Physiology (medical)


Dive into the research topics of 'Influence of increased plasma osmolality on sympathetic outflow during apnea'. Together they form a unique fingerprint.

Cite this