Influence of protein-protein interactions on bulk mass transport during ultrafiltration

Skand Saksena, Andrew L. Zydney

Research output: Contribution to journalArticlepeer-review

54 Scopus citations

Abstract

Bulk mass transfer limitations can have a significant effect on the flux and selectivity during membrane ultrafiltration. Most previous studies of these phenomena have employed the simple stagnant film analysis, but this model is unable to account for the effects of solute-solute interactions on mass transport. We have developed a generalized framework for multicomponent mass transfer that includes both thermodynamic and hydrodynamic (frictional) interactions. Thermodynamic (virial) coefficients were evaluated from osmotic pressure data for albumin (BSA) and immunoglobulins (IgG), while hydrodynamic interaction parameters were determined from filtrate flux data obtained in a stirred cell using fully retentive membranes. The protein concentration profiles in the bulk solution were evaluated by numerical solution of the governing continuity equations incorporating the multicomponent diffusive flux. This model was used to analyze flux and protein transmission data obtained for the filtration of BSA and IgG mixtures through partially permeable membranes. The model accurately predicted the large reduction in flux and BSA transmission upon addition of IgC. These effects were due to the coupling between BSA and IgG mass transfer caused by protein-protein interactions.

Original languageEnglish (US)
Pages (from-to)93-108
Number of pages16
JournalJournal of Membrane Science
Volume125
Issue number1
DOIs
StatePublished - Mar 5 1997

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Materials Science(all)
  • Physical and Theoretical Chemistry
  • Filtration and Separation

Fingerprint Dive into the research topics of 'Influence of protein-protein interactions on bulk mass transport during ultrafiltration'. Together they form a unique fingerprint.

Cite this