Influence of tetrahedral layer charge on the organization of interlayer water and ions in synthetic Na-saturated smectites

Baptiste Dazas, Bruno Lanson, Alfred Delville, Jean Louis Robert, Sridhar Komarneni, Laurent J. Michot, Eric Ferrage

Research output: Contribution to journalArticle

41 Citations (Scopus)

Abstract

Smectite hydration strongly influences dynamical properties of interlayer cations and thus the fate of H2O and pollutants in surficial systems where smectite-based materials are often used as a major barrier component. Smectite crystal chemistry is known to rule its hydration, although the influence of specific parameters such as the amount and location of layer charge deficit remains poorly understood. A set of tetrahedrally charged trioctahedral smectites, with a common structural formula inter[Nax]oct[Mg6]tet[Si8.0-xAlx]O20(OH,F)4 and a layer charge (x) varying from 0.8 to 3.0, were thus synthesized to assess the influence of layer charge on smectite hydration and interlayer structure. Both hydroxylated and fluorinated samples were synthesized because of the increasing use of the latter varieties in recent spectroscopic studies aiming at the determination of interlayer H2O dynamical properties. The distribution of charge-compensating cations and of associated H2O molecules was determined both experimentally from the modeling of X-ray diffraction patterns and numerically from Monte Carlo molecular simulations performed in the grand canonical ensemble. The consistency of both approaches for hydroxylated samples allowed gaining insights into the specific influence of smectite crystal chemistry. For a given hydration state, H2O content is about constant in hydroxylated saponites, independent of layer charge, whereas smectite layer-to-layer distance decreases with increasing layer charge because of the enhanced cation-layer electrostatic attraction. As a result, positional disorder of interlayer H2O molecules is reduced because of stronger steric constraints and of the increased density of electronegative sites at the surface of the clay layer. Fluorine-for-hydroxyl isomorphic substitutions likely increase further electronegativity of the clay layer surface leading to further reduction of the interlayer H2O content and to the formation of Na+ inner sphere complexes at the clay layer surface. When normalized to the number of interlayer cations, the number of interlayer H2O molecules decreases with increasing layer charge, and the proportion of these H2O molecules hydrating interlayer cations increases, thus increasing the stability of most hydrated states toward lower relative humidity conditions. Smectite hydration evolution appears as a steady process with no tendency to interlayer cation ordering at the smectite-to-vermiculite limit of ∼1.3 charge per O20(OH,F)4.

Original languageEnglish (US)
Pages (from-to)4158-4172
Number of pages15
JournalJournal of Physical Chemistry C
Volume119
Issue number8
DOIs
StatePublished - Feb 26 2015

Fingerprint

montmorillonite
interlayers
Hydration
Positive ions
Ions
Cations
Water
water
Crystal chemistry
hydration
Clay
ions
Molecules
cations
clays
Electronegativity
molecules
surface layers
Fluorine
Diffraction patterns

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Energy(all)
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Cite this

Dazas, Baptiste ; Lanson, Bruno ; Delville, Alfred ; Robert, Jean Louis ; Komarneni, Sridhar ; Michot, Laurent J. ; Ferrage, Eric. / Influence of tetrahedral layer charge on the organization of interlayer water and ions in synthetic Na-saturated smectites. In: Journal of Physical Chemistry C. 2015 ; Vol. 119, No. 8. pp. 4158-4172.
@article{76cd451d94824c99b1c9c724a8b4617c,
title = "Influence of tetrahedral layer charge on the organization of interlayer water and ions in synthetic Na-saturated smectites",
abstract = "Smectite hydration strongly influences dynamical properties of interlayer cations and thus the fate of H2O and pollutants in surficial systems where smectite-based materials are often used as a major barrier component. Smectite crystal chemistry is known to rule its hydration, although the influence of specific parameters such as the amount and location of layer charge deficit remains poorly understood. A set of tetrahedrally charged trioctahedral smectites, with a common structural formula inter[Nax]oct[Mg6]tet[Si8.0-xAlx]O20(OH,F)4 and a layer charge (x) varying from 0.8 to 3.0, were thus synthesized to assess the influence of layer charge on smectite hydration and interlayer structure. Both hydroxylated and fluorinated samples were synthesized because of the increasing use of the latter varieties in recent spectroscopic studies aiming at the determination of interlayer H2O dynamical properties. The distribution of charge-compensating cations and of associated H2O molecules was determined both experimentally from the modeling of X-ray diffraction patterns and numerically from Monte Carlo molecular simulations performed in the grand canonical ensemble. The consistency of both approaches for hydroxylated samples allowed gaining insights into the specific influence of smectite crystal chemistry. For a given hydration state, H2O content is about constant in hydroxylated saponites, independent of layer charge, whereas smectite layer-to-layer distance decreases with increasing layer charge because of the enhanced cation-layer electrostatic attraction. As a result, positional disorder of interlayer H2O molecules is reduced because of stronger steric constraints and of the increased density of electronegative sites at the surface of the clay layer. Fluorine-for-hydroxyl isomorphic substitutions likely increase further electronegativity of the clay layer surface leading to further reduction of the interlayer H2O content and to the formation of Na+ inner sphere complexes at the clay layer surface. When normalized to the number of interlayer cations, the number of interlayer H2O molecules decreases with increasing layer charge, and the proportion of these H2O molecules hydrating interlayer cations increases, thus increasing the stability of most hydrated states toward lower relative humidity conditions. Smectite hydration evolution appears as a steady process with no tendency to interlayer cation ordering at the smectite-to-vermiculite limit of ∼1.3 charge per O20(OH,F)4.",
author = "Baptiste Dazas and Bruno Lanson and Alfred Delville and Robert, {Jean Louis} and Sridhar Komarneni and Michot, {Laurent J.} and Eric Ferrage",
year = "2015",
month = "2",
day = "26",
doi = "10.1021/jp5123322",
language = "English (US)",
volume = "119",
pages = "4158--4172",
journal = "Journal of Physical Chemistry C",
issn = "1932-7447",
publisher = "American Chemical Society",
number = "8",

}

Influence of tetrahedral layer charge on the organization of interlayer water and ions in synthetic Na-saturated smectites. / Dazas, Baptiste; Lanson, Bruno; Delville, Alfred; Robert, Jean Louis; Komarneni, Sridhar; Michot, Laurent J.; Ferrage, Eric.

In: Journal of Physical Chemistry C, Vol. 119, No. 8, 26.02.2015, p. 4158-4172.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Influence of tetrahedral layer charge on the organization of interlayer water and ions in synthetic Na-saturated smectites

AU - Dazas, Baptiste

AU - Lanson, Bruno

AU - Delville, Alfred

AU - Robert, Jean Louis

AU - Komarneni, Sridhar

AU - Michot, Laurent J.

AU - Ferrage, Eric

PY - 2015/2/26

Y1 - 2015/2/26

N2 - Smectite hydration strongly influences dynamical properties of interlayer cations and thus the fate of H2O and pollutants in surficial systems where smectite-based materials are often used as a major barrier component. Smectite crystal chemistry is known to rule its hydration, although the influence of specific parameters such as the amount and location of layer charge deficit remains poorly understood. A set of tetrahedrally charged trioctahedral smectites, with a common structural formula inter[Nax]oct[Mg6]tet[Si8.0-xAlx]O20(OH,F)4 and a layer charge (x) varying from 0.8 to 3.0, were thus synthesized to assess the influence of layer charge on smectite hydration and interlayer structure. Both hydroxylated and fluorinated samples were synthesized because of the increasing use of the latter varieties in recent spectroscopic studies aiming at the determination of interlayer H2O dynamical properties. The distribution of charge-compensating cations and of associated H2O molecules was determined both experimentally from the modeling of X-ray diffraction patterns and numerically from Monte Carlo molecular simulations performed in the grand canonical ensemble. The consistency of both approaches for hydroxylated samples allowed gaining insights into the specific influence of smectite crystal chemistry. For a given hydration state, H2O content is about constant in hydroxylated saponites, independent of layer charge, whereas smectite layer-to-layer distance decreases with increasing layer charge because of the enhanced cation-layer electrostatic attraction. As a result, positional disorder of interlayer H2O molecules is reduced because of stronger steric constraints and of the increased density of electronegative sites at the surface of the clay layer. Fluorine-for-hydroxyl isomorphic substitutions likely increase further electronegativity of the clay layer surface leading to further reduction of the interlayer H2O content and to the formation of Na+ inner sphere complexes at the clay layer surface. When normalized to the number of interlayer cations, the number of interlayer H2O molecules decreases with increasing layer charge, and the proportion of these H2O molecules hydrating interlayer cations increases, thus increasing the stability of most hydrated states toward lower relative humidity conditions. Smectite hydration evolution appears as a steady process with no tendency to interlayer cation ordering at the smectite-to-vermiculite limit of ∼1.3 charge per O20(OH,F)4.

AB - Smectite hydration strongly influences dynamical properties of interlayer cations and thus the fate of H2O and pollutants in surficial systems where smectite-based materials are often used as a major barrier component. Smectite crystal chemistry is known to rule its hydration, although the influence of specific parameters such as the amount and location of layer charge deficit remains poorly understood. A set of tetrahedrally charged trioctahedral smectites, with a common structural formula inter[Nax]oct[Mg6]tet[Si8.0-xAlx]O20(OH,F)4 and a layer charge (x) varying from 0.8 to 3.0, were thus synthesized to assess the influence of layer charge on smectite hydration and interlayer structure. Both hydroxylated and fluorinated samples were synthesized because of the increasing use of the latter varieties in recent spectroscopic studies aiming at the determination of interlayer H2O dynamical properties. The distribution of charge-compensating cations and of associated H2O molecules was determined both experimentally from the modeling of X-ray diffraction patterns and numerically from Monte Carlo molecular simulations performed in the grand canonical ensemble. The consistency of both approaches for hydroxylated samples allowed gaining insights into the specific influence of smectite crystal chemistry. For a given hydration state, H2O content is about constant in hydroxylated saponites, independent of layer charge, whereas smectite layer-to-layer distance decreases with increasing layer charge because of the enhanced cation-layer electrostatic attraction. As a result, positional disorder of interlayer H2O molecules is reduced because of stronger steric constraints and of the increased density of electronegative sites at the surface of the clay layer. Fluorine-for-hydroxyl isomorphic substitutions likely increase further electronegativity of the clay layer surface leading to further reduction of the interlayer H2O content and to the formation of Na+ inner sphere complexes at the clay layer surface. When normalized to the number of interlayer cations, the number of interlayer H2O molecules decreases with increasing layer charge, and the proportion of these H2O molecules hydrating interlayer cations increases, thus increasing the stability of most hydrated states toward lower relative humidity conditions. Smectite hydration evolution appears as a steady process with no tendency to interlayer cation ordering at the smectite-to-vermiculite limit of ∼1.3 charge per O20(OH,F)4.

UR - http://www.scopus.com/inward/record.url?scp=84923974336&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84923974336&partnerID=8YFLogxK

U2 - 10.1021/jp5123322

DO - 10.1021/jp5123322

M3 - Article

AN - SCOPUS:84923974336

VL - 119

SP - 4158

EP - 4172

JO - Journal of Physical Chemistry C

JF - Journal of Physical Chemistry C

SN - 1932-7447

IS - 8

ER -