Influencing dielectric properties of relaxor polymer system by blending vinylidene fluoride-trifluoroethylene-based terpolymer with a ferroelectric copolymer

G. Casar, X. Li, Qiming Zhang, V. Bobnar

    Research output: Contribution to journalArticle

    4 Citations (Scopus)

    Abstract

    We report the influence of blending the poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer [P(VDF-TrFE-CFE), a member of the relaxor polymer family that exhibits fast response speeds, giant electrostriction, high electric energy density, and large electrocaloric effect] with the ferroelectric poly(vinylidene fluoride-trifluoroethylene) copolymer [P(VDF-TrFE)] on its dielectric response. Although both components form separate crystalline phases, at low copolymer content, the P(VDF-TrFE-CFE)/P(VDF-TrFE) blends entirely exhibit a relaxorlike linear dielectric response, since the interfacial couplings to the bulky defects in the terpolymer convert the normal ferroelectric copolymer into a relaxor. On the other hand, the linear and particularly nonlinear dielectric experiments, i.e., temperature dependences of the second and the third harmonic dielectric response, clearly evidence that in blends with 20-50 wt. % of P(VDF-TrFE), the ferroelectric and relaxor states coexist. The nonlinear dielectric response further reveals the onset of ferroelectric behavior also in blends with low copolymer amount, due to a high VDF content in the terpolymer, which increases the ferroelectric interactions: While in relaxor polymers with lower VDF content, the third order nonlinear dielectric constant, in accordance with the theoretical predictions, exhibits solely positive values, here it changes sign even in the pure P(VDF-TrFE-CFE).

    Original languageEnglish (US)
    Article number104101
    JournalJournal of Applied Physics
    Volume115
    Issue number10
    DOIs
    StatePublished - Mar 14 2014

    Fingerprint

    vinylidene
    fluorides
    dielectric properties
    copolymers
    polymers
    electrostriction
    flux density
    permittivity
    harmonics
    temperature dependence
    defects
    predictions
    interactions

    All Science Journal Classification (ASJC) codes

    • Physics and Astronomy(all)

    Cite this

    @article{5e4e3c9a5ddb469badff29baa1279bc7,
    title = "Influencing dielectric properties of relaxor polymer system by blending vinylidene fluoride-trifluoroethylene-based terpolymer with a ferroelectric copolymer",
    abstract = "We report the influence of blending the poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer [P(VDF-TrFE-CFE), a member of the relaxor polymer family that exhibits fast response speeds, giant electrostriction, high electric energy density, and large electrocaloric effect] with the ferroelectric poly(vinylidene fluoride-trifluoroethylene) copolymer [P(VDF-TrFE)] on its dielectric response. Although both components form separate crystalline phases, at low copolymer content, the P(VDF-TrFE-CFE)/P(VDF-TrFE) blends entirely exhibit a relaxorlike linear dielectric response, since the interfacial couplings to the bulky defects in the terpolymer convert the normal ferroelectric copolymer into a relaxor. On the other hand, the linear and particularly nonlinear dielectric experiments, i.e., temperature dependences of the second and the third harmonic dielectric response, clearly evidence that in blends with 20-50 wt. {\%} of P(VDF-TrFE), the ferroelectric and relaxor states coexist. The nonlinear dielectric response further reveals the onset of ferroelectric behavior also in blends with low copolymer amount, due to a high VDF content in the terpolymer, which increases the ferroelectric interactions: While in relaxor polymers with lower VDF content, the third order nonlinear dielectric constant, in accordance with the theoretical predictions, exhibits solely positive values, here it changes sign even in the pure P(VDF-TrFE-CFE).",
    author = "G. Casar and X. Li and Qiming Zhang and V. Bobnar",
    year = "2014",
    month = "3",
    day = "14",
    doi = "10.1063/1.4867978",
    language = "English (US)",
    volume = "115",
    journal = "Journal of Applied Physics",
    issn = "0021-8979",
    publisher = "American Institute of Physics Publising LLC",
    number = "10",

    }

    TY - JOUR

    T1 - Influencing dielectric properties of relaxor polymer system by blending vinylidene fluoride-trifluoroethylene-based terpolymer with a ferroelectric copolymer

    AU - Casar, G.

    AU - Li, X.

    AU - Zhang, Qiming

    AU - Bobnar, V.

    PY - 2014/3/14

    Y1 - 2014/3/14

    N2 - We report the influence of blending the poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer [P(VDF-TrFE-CFE), a member of the relaxor polymer family that exhibits fast response speeds, giant electrostriction, high electric energy density, and large electrocaloric effect] with the ferroelectric poly(vinylidene fluoride-trifluoroethylene) copolymer [P(VDF-TrFE)] on its dielectric response. Although both components form separate crystalline phases, at low copolymer content, the P(VDF-TrFE-CFE)/P(VDF-TrFE) blends entirely exhibit a relaxorlike linear dielectric response, since the interfacial couplings to the bulky defects in the terpolymer convert the normal ferroelectric copolymer into a relaxor. On the other hand, the linear and particularly nonlinear dielectric experiments, i.e., temperature dependences of the second and the third harmonic dielectric response, clearly evidence that in blends with 20-50 wt. % of P(VDF-TrFE), the ferroelectric and relaxor states coexist. The nonlinear dielectric response further reveals the onset of ferroelectric behavior also in blends with low copolymer amount, due to a high VDF content in the terpolymer, which increases the ferroelectric interactions: While in relaxor polymers with lower VDF content, the third order nonlinear dielectric constant, in accordance with the theoretical predictions, exhibits solely positive values, here it changes sign even in the pure P(VDF-TrFE-CFE).

    AB - We report the influence of blending the poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer [P(VDF-TrFE-CFE), a member of the relaxor polymer family that exhibits fast response speeds, giant electrostriction, high electric energy density, and large electrocaloric effect] with the ferroelectric poly(vinylidene fluoride-trifluoroethylene) copolymer [P(VDF-TrFE)] on its dielectric response. Although both components form separate crystalline phases, at low copolymer content, the P(VDF-TrFE-CFE)/P(VDF-TrFE) blends entirely exhibit a relaxorlike linear dielectric response, since the interfacial couplings to the bulky defects in the terpolymer convert the normal ferroelectric copolymer into a relaxor. On the other hand, the linear and particularly nonlinear dielectric experiments, i.e., temperature dependences of the second and the third harmonic dielectric response, clearly evidence that in blends with 20-50 wt. % of P(VDF-TrFE), the ferroelectric and relaxor states coexist. The nonlinear dielectric response further reveals the onset of ferroelectric behavior also in blends with low copolymer amount, due to a high VDF content in the terpolymer, which increases the ferroelectric interactions: While in relaxor polymers with lower VDF content, the third order nonlinear dielectric constant, in accordance with the theoretical predictions, exhibits solely positive values, here it changes sign even in the pure P(VDF-TrFE-CFE).

    UR - http://www.scopus.com/inward/record.url?scp=84896369258&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=84896369258&partnerID=8YFLogxK

    U2 - 10.1063/1.4867978

    DO - 10.1063/1.4867978

    M3 - Article

    VL - 115

    JO - Journal of Applied Physics

    JF - Journal of Applied Physics

    SN - 0021-8979

    IS - 10

    M1 - 104101

    ER -