Inherent stochasticity during insulator-metal transition in VO2

Shaobo Cheng, Min Han Lee, Richard Tran, Yin Shi, Xing Li, Henry Navarro, Coline Adda, Qingping Meng, Long Qing Chen, R. C. Dynes, Shyue Ping Ong, Ivan K. Schuller, Yimei Zhu

Research output: Contribution to journalArticlepeer-review

Abstract

Vanadium dioxide (V2), which exhibits a near-room-temperature insulator-metal transition, has great potential in applications of neuromorphic computing devices. Although its volatile switching property, which could emulate neuron spiking, has been studied widely, nanoscale studies of the structural stochasticity across the phase transition are still lacking. In this study, using in situ transmission electron microscopy and ex situ resistive switching measurement, we successfully characterized the structural phase transition between monoclinic and rutile V2at local areas in planar V2/Ti2device configuration under external biasing. After each resistive switching, different V2monoclinic crystal orientations are observed, forming different equilibrium states. We have evaluated a statistical cycle-to-cycle variation, demonstrated a stochastic nature of the volatile resistive switching, and presented an approach to study in-plane structural anisotropy. Our microscopic studies move a big step forward toward understanding the volatile switching mechanisms and the related applications of V2as the key material of neuromorphic computing.

Original languageEnglish (US)
Article numbere2105895118
JournalProceedings of the National Academy of Sciences of the United States of America
Volume118
Issue number37
DOIs
StatePublished - Sep 14 2021

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Inherent stochasticity during insulator-metal transition in VO<sub>2</sub>'. Together they form a unique fingerprint.

Cite this