Inhibiting TNF-mediated signaling: A novel therapeutic paradigm for androgen independent prostate cancer

Sowmyalakshmi Srinivasan, Raj Kumar, Srinivas Koduru, Aaditya Chandramouli, Chendil Damodaran

Research output: Contribution to journalArticle

29 Scopus citations

Abstract

The tumor necrosis factor (TNF) receptor super family comprises of members that induce two distinct signaling cascades, leading to either cell survival or apoptosis. However, in prostate cancer (PCa), TNF-mediated prosurvival signaling is the predominant pathway that leads to cell survival and resistance to therapy. Although inhibition of TNF signaling by pharmacological agents or monoclonal antibodies has gained importance in the field of cancer therapy, toxicity to normal cells has impaired their extensive use for cancer treatment. We previously identified a natural, nontoxic compound psoralidin that inhibited viability and induced apoptosis in androgen independent prostate cancer (AIPC) cells. Thus, the goal of our study is to investigate whether psoralidin inhibits TNF-mediated prosurvival signaling in AIPC cells. Our results suggest that psoralidin inhibits constitutive and TNF-induced expression of TNF-α and its downstream prosurvival signaling molecules such as NF-κB and Bcl-2 in AIPC cells. On the other hand, psoralidin simultaneously induces the death receptor (DR)-mediated apoptotic signaling eventually causing the activation of caspase cascade and resultant induction of apoptosis. Oral administration of psoralidin inhibits expression of TNF-α and NF-κB/p65 in tumor sections, resulting in tumor regression in PC-3 xenografts. Our results suggest that psoralidin inhibits TNF-mediated survival signaling in AIPC and thus is a potent therapeutic agent for prostate cancer.

Original languageEnglish (US)
Pages (from-to)153-161
Number of pages9
JournalApoptosis
Volume15
Issue number2
DOIs
StatePublished - Feb 1 2010

All Science Journal Classification (ASJC) codes

  • Pharmacology
  • Pharmaceutical Science
  • Clinical Biochemistry
  • Cell Biology
  • Biochemistry, medical
  • Cancer Research

Fingerprint Dive into the research topics of 'Inhibiting TNF-mediated signaling: A novel therapeutic paradigm for androgen independent prostate cancer'. Together they form a unique fingerprint.

  • Cite this