Inhibition and oxidation characteristics of chloromethanes in reacting CO/H2O/O2 mixtures

J. F. Roesler, R. A. Yetter, F. L. Dryer

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

The study of chlorinated hydrocarbon oxidation in an environment controlled by the moist CO oxidation reaction is directly relevant to the post-flame chemistry of hazardous waste incinerators, and thus to the control of pollutant emissions. In the present article, experimental results are presented on the CO/H2O/O2 reaction perturbed by trace amounts of CH3Cl, CH2Cl2, CHCl3, and CCl4 obtained from a flow reactor at temperatures near 1000 K and at atmospheric pressure. As is well documented in the fire retardent literature, the chloromethanes are observed here to be strong inhibitors of CO oxidation. In the present post-flame like environments, ranking in order of increasing inhibition effectiveness is CHCl3 < CH3Cl < CH2Cl2 on a molar basis. Inhibition from CCl4 was greater or less than CH3Cl at low or high loadings respectively. This ranking correlates well with literature rate constants of reactions controlling the radical pool level in this type of system. Detailed species profiles were obtained and revealed that all but CH3Cl formed considerable amounts of highly toxic phosgene, with yields ranging from 7 to 26% of the initially added chloromethane on a molar basis. These yields are due in part to the slow oxidation rate of phosgene, slower than all other chlorocarbons observed in this study. As a result, it, survives well into the region of CO oxidation, with potential implications on the toxicity of emissions. Finally, a rate constant for the primary consumption channel for phosgene, COCl2 + H → COCl + HCl was evaluated from these data to be 1.0 (±0.4) × 1012 cc/mol/s at 1000 K, which is a factor 2 to 4 slower than current literature estimates.

Original languageEnglish (US)
Pages (from-to)11-37
Number of pages27
JournalCombustion science and technology
Volume120
Issue number1-6
DOIs
StatePublished - 1996

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Chemical Engineering(all)
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Inhibition and oxidation characteristics of chloromethanes in reacting CO/H<sub>2</sub>O/O<sub>2</sub> mixtures'. Together they form a unique fingerprint.

Cite this