Inhibition of pancreatic lipase by black tea theaflavins: Comparative enzymology and in silico modeling studies

Shannon L. Glisan, Kimberly A. Grove, Neela H. Yennawar, Joshua D. Lambert

Research output: Contribution to journalArticle

24 Scopus citations

Abstract

Few studies have examined the effect of black tea (Camellia sinensis) theaflavins on obesity-related targets. Pancreatic lipase (PL) plays a central role in fat metabolism and is a validated target for weight loss. We compared the inhibitory efficacy of individual theaflavins and explored the underlying mechanism. Theaflavin-3,3′-digallate (TFdiG), theaflavin-3′-gallate, theaflavin-3-gallate, and theaflavin inhibited PL with IC50 of 1.9, 4.2, 3.0, and >10 μmol/L. The presence and location of the galloyl ester moiety were essential for inhibitory potency. TFdiG exhibited mixed inhibition with respect to substrate concentration. In silico modeling showed that theaflavins bind to Asn263 and Asp206, which form a pocket adjacent to the active site, and galloyl-containing theaflavins are then predicted to perturb the protonation of His264. These data provide a putative mechanism to explain the anti-obesity effects of tea.

Original languageEnglish (US)
Pages (from-to)296-300
Number of pages5
JournalFood Chemistry
Volume216
DOIs
StatePublished - Feb 1 2017

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Analytical Chemistry
  • Food Science
  • Medicine(all)

Cite this