Innovations in piezoelectric materials for ultrasound transducers

T. R. Shrout, S. E. Park, P. Lopath, R. Meyer, T. Ritter, K. Shung

Research output: Contribution to journalConference articlepeer-review

21 Scopus citations

Abstract

Piezoelectric materials lie at the heart of ultrasonic transducers. Recent advances in materials development include submicron piezoelectric ceramics (PZT) which lead to improvements in feature size, i.e. aspect ratio, element width, etc., for linear arrays and high frequency transducers (> 100 MHz). In contrast to fine grain ceramics, single crystal materials based on Relaxor-PT ferroelectrics offer electromechanical coupling coefficients > 90% with a range of dielectric permittivity (100s to 1000s) allowing flexibility in transducer engineering in regard to electrical impedance matching. Using KLM modeling, very high bandwidth performance > 120% is projected. Specific examples of high frequency 1-3 composites and 1-D linear array transducers fabricated from new piezoelectric materials, including sol-gel derived PZT fibers, are presented.

Original languageEnglish (US)
Pages (from-to)174-183
Number of pages10
JournalProceedings of SPIE - The International Society for Optical Engineering
Volume3341
DOIs
StatePublished - Dec 1 1998
EventMedical Imaging 1998: Ultrasonic Transducer Engineering - San Diego, CA, United States
Duration: Feb 25 1998Feb 26 1998

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Innovations in piezoelectric materials for ultrasound transducers'. Together they form a unique fingerprint.

Cite this