Insights into the overpotential for oxygen reduction on Pt and Pt skin alloys: A comparison of theory and experiment

Matthew Neurock, Michael John Janik, Sally A. Wasileski, Alfred Anderson, Sanjeev Mukerjee

Research output: Contribution to conferencePaperpeer-review

1 Scopus citations

Abstract

The catalytic activity at cathode proves to be a major source of the overpotential that limits most PEM fuel cells. While it is well established that the formation of Pt skin layers on various alloys such as PtCo and PtCr can enhance the catalytic activity by preventing the formation of surface hydroxyl intermediates, it is unclear why there is only a modest change in the overpotential at the cathode. Herein, we examine the initial stages of adsorption and the activation of O2 as a function of applied potential over Pt in the presence of an aqueous media. The results suggest that while OH is minimized other intermediates can compete for O2 adsorption sites and thus limit its activation. The results are compared with experimental results on well-defined Pt and Pt skin alloys.

Original languageEnglish (US)
Number of pages1
StatePublished - Dec 1 2005
Event05AIChE: 2005 AIChE Annual Meeting and Fall Showcase - Cincinnati, OH, United States
Duration: Oct 30 2005Nov 4 2005

Other

Other05AIChE: 2005 AIChE Annual Meeting and Fall Showcase
CountryUnited States
CityCincinnati, OH
Period10/30/0511/4/05

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Fingerprint Dive into the research topics of 'Insights into the overpotential for oxygen reduction on Pt and Pt skin alloys: A comparison of theory and experiment'. Together they form a unique fingerprint.

Cite this