Integration of cellulases into bacterial cellulose: Toward bioabsorbable cellulose composites

Research output: Contribution to journalArticle

45 Citations (Scopus)

Abstract

Cellulose biodegradation resulting from enzymolysis generally occurs in nature rather than in the human body because of the absence of cellulose degrading enzymes. In order to achieve in-vivo degradation in human body for in-vivo tissue regeneration applications, we developed a bioaborbable bacterial cellulose (BBC) material, which integrates one or more cellulose degrading enzymes (cellulases), and demonstrated its degradability in vitro using buffers with pH values relevant to wound environments. We introduced a double lyophilizing process to retain the microstructure of the bacterial cellulose as well as the activity of embedded enzymes allowing for long-term storage of the material, which only requires hydration before use. Enzymes and their combinations have been examined to optimize the in-vitro degradation of the BBC material. In-vitro studies revealed that acidic cellulases from Trichoderma viride showed reasonable activity for pH values ranging from 4.5 to 6.0. A commercial cellulase (cellulase-5000) did not show good activity at pH 7.4, but its degrading ability increased when used in conjunction with a β-glucosidase from Bacillus subtilis or a β-glucosidase from Trichoderma sp. Given the harmless glucose product of the enzymatic degradation of cellulose, the BBC material may be ideal for many wound care and tissue engineering applications for the bioabsorbable purpose.

Original languageEnglish (US)
Pages (from-to)114-123
Number of pages10
JournalJournal of Biomedical Materials Research - Part B Applied Biomaterials
Volume97 B
Issue number1
DOIs
StatePublished - Apr 1 2011

Fingerprint

Cellulases
Cellulose
Composite materials
Enzymes
Glucosidases
Cellulase
Degradation
Tissue regeneration
Bacilli
Biodegradation
Tissue engineering
Hydration
Glucose
Buffers
Microstructure

All Science Journal Classification (ASJC) codes

  • Biomaterials
  • Biomedical Engineering

Cite this

@article{c27ab0e2993d4c74a7a3d42426f47a5b,
title = "Integration of cellulases into bacterial cellulose: Toward bioabsorbable cellulose composites",
abstract = "Cellulose biodegradation resulting from enzymolysis generally occurs in nature rather than in the human body because of the absence of cellulose degrading enzymes. In order to achieve in-vivo degradation in human body for in-vivo tissue regeneration applications, we developed a bioaborbable bacterial cellulose (BBC) material, which integrates one or more cellulose degrading enzymes (cellulases), and demonstrated its degradability in vitro using buffers with pH values relevant to wound environments. We introduced a double lyophilizing process to retain the microstructure of the bacterial cellulose as well as the activity of embedded enzymes allowing for long-term storage of the material, which only requires hydration before use. Enzymes and their combinations have been examined to optimize the in-vitro degradation of the BBC material. In-vitro studies revealed that acidic cellulases from Trichoderma viride showed reasonable activity for pH values ranging from 4.5 to 6.0. A commercial cellulase (cellulase-5000) did not show good activity at pH 7.4, but its degrading ability increased when used in conjunction with a β-glucosidase from Bacillus subtilis or a β-glucosidase from Trichoderma sp. Given the harmless glucose product of the enzymatic degradation of cellulose, the BBC material may be ideal for many wound care and tissue engineering applications for the bioabsorbable purpose.",
author = "Yang Hu and Catchmark, {Jeffrey M.}",
year = "2011",
month = "4",
day = "1",
doi = "10.1002/jbm.b.31792",
language = "English (US)",
volume = "97 B",
pages = "114--123",
journal = "Journal of Biomedical Materials Research - Part B Applied Biomaterials",
issn = "1552-4973",
publisher = "John Wiley and Sons Inc.",
number = "1",

}

TY - JOUR

T1 - Integration of cellulases into bacterial cellulose

T2 - Toward bioabsorbable cellulose composites

AU - Hu, Yang

AU - Catchmark, Jeffrey M.

PY - 2011/4/1

Y1 - 2011/4/1

N2 - Cellulose biodegradation resulting from enzymolysis generally occurs in nature rather than in the human body because of the absence of cellulose degrading enzymes. In order to achieve in-vivo degradation in human body for in-vivo tissue regeneration applications, we developed a bioaborbable bacterial cellulose (BBC) material, which integrates one or more cellulose degrading enzymes (cellulases), and demonstrated its degradability in vitro using buffers with pH values relevant to wound environments. We introduced a double lyophilizing process to retain the microstructure of the bacterial cellulose as well as the activity of embedded enzymes allowing for long-term storage of the material, which only requires hydration before use. Enzymes and their combinations have been examined to optimize the in-vitro degradation of the BBC material. In-vitro studies revealed that acidic cellulases from Trichoderma viride showed reasonable activity for pH values ranging from 4.5 to 6.0. A commercial cellulase (cellulase-5000) did not show good activity at pH 7.4, but its degrading ability increased when used in conjunction with a β-glucosidase from Bacillus subtilis or a β-glucosidase from Trichoderma sp. Given the harmless glucose product of the enzymatic degradation of cellulose, the BBC material may be ideal for many wound care and tissue engineering applications for the bioabsorbable purpose.

AB - Cellulose biodegradation resulting from enzymolysis generally occurs in nature rather than in the human body because of the absence of cellulose degrading enzymes. In order to achieve in-vivo degradation in human body for in-vivo tissue regeneration applications, we developed a bioaborbable bacterial cellulose (BBC) material, which integrates one or more cellulose degrading enzymes (cellulases), and demonstrated its degradability in vitro using buffers with pH values relevant to wound environments. We introduced a double lyophilizing process to retain the microstructure of the bacterial cellulose as well as the activity of embedded enzymes allowing for long-term storage of the material, which only requires hydration before use. Enzymes and their combinations have been examined to optimize the in-vitro degradation of the BBC material. In-vitro studies revealed that acidic cellulases from Trichoderma viride showed reasonable activity for pH values ranging from 4.5 to 6.0. A commercial cellulase (cellulase-5000) did not show good activity at pH 7.4, but its degrading ability increased when used in conjunction with a β-glucosidase from Bacillus subtilis or a β-glucosidase from Trichoderma sp. Given the harmless glucose product of the enzymatic degradation of cellulose, the BBC material may be ideal for many wound care and tissue engineering applications for the bioabsorbable purpose.

UR - http://www.scopus.com/inward/record.url?scp=79952391710&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79952391710&partnerID=8YFLogxK

U2 - 10.1002/jbm.b.31792

DO - 10.1002/jbm.b.31792

M3 - Article

C2 - 21290589

AN - SCOPUS:79952391710

VL - 97 B

SP - 114

EP - 123

JO - Journal of Biomedical Materials Research - Part B Applied Biomaterials

JF - Journal of Biomedical Materials Research - Part B Applied Biomaterials

SN - 1552-4973

IS - 1

ER -