Interaction and coalescence of drops and bubbles rising through a tube

Eisa Almatroushr, Ali Borhan

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

An experimental study of the interaction and coalescence of two drops (of the same fluid) or bubbles translating under the action of buoyancy in a cylindrical tube is performed. The close approach of two Newtonian drops or bubbles of different size in a Newtonian continuous phase is examined using image analysis, and measurements of the coalescence time are reported for various drop size ratios, Bond numbers, and drop to suspending fluid viscosity ratios. The time scale for coalescence in the non-axisymmetric configuration is found to be substantially larger than that for coalescence in the axisymmetric configuration. Experimental measurements of the radius of the liquid film between the two drops are used in conjunction with a simple film-drainage model to predict the dependence of the coalescence time on the drop size ratio. The agreement between the model predictions and the experimental measurements is satisfactory for axisymmetric coalescence in the low viscosity ratio systems. For the systems with O(1) viscosity ratio, on the other hand, model predictions are qualitatively different from experimental observations.

Original languageEnglish (US)
Pages (from-to)398-406
Number of pages9
JournalIndustrial and Engineering Chemistry Research
Volume45
Issue number1
DOIs
StatePublished - Jan 4 2006

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Chemical Engineering(all)
  • Industrial and Manufacturing Engineering

Fingerprint Dive into the research topics of 'Interaction and coalescence of drops and bubbles rising through a tube'. Together they form a unique fingerprint.

Cite this