Interaction between surface morphology and misfit dislocations as strain relaxation modes in lattice-mismatched heteroepitaxy

R. Hull, J. Gray, C. C. Wu, S. Atha, J. A. Floro

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

We show how strained layer heteroepitaxial systems can serve as model systems for the study of dislocation energetics and kinetics in semiconductors through the introduction of strain-relieving misfit dislocation arrays. Such structures allow fundamental dislocation properties to be studied at carefully controlled stresses in the range 107-109 Pa. A parallel strain relaxation mode in strained heterostructures is via coherent islanding or surface roughening of the epitaxial layer. This mechanism acts both in competition and in cooperation with injection of misfit dislocations, and provides a further degree of control for study of the fundamental energetic and kinetic properties of dislocations. Using ultra-sensitive in situ wafer curvature measurements of stress during molecular beam epitaxy growth of GexSi1-x/Si heterostructures, the relative contributions of surface roughening and dislocation injection to strain relaxation may be qualitatively and quantitatively assessed. In addition, a new strain-stabilized morphology, 'quantum fortresses', comprising cooperative island nucleation around shallow strain-relieving pits, is identified during Ge0.3Si0.7/Si(100) heteroepitaxy. This configuration has potential application to nanoelectronic device architectures.

Original languageEnglish (US)
Pages (from-to)12829-12841
Number of pages13
JournalJournal of Physics Condensed Matter
Volume14
Issue number48
DOIs
StatePublished - Dec 16 2002

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Interaction between surface morphology and misfit dislocations as strain relaxation modes in lattice-mismatched heteroepitaxy'. Together they form a unique fingerprint.

Cite this