Interaction of TGF-beta1 and rhBMP-2 on human bone marrow stromal cells cultured in collagen gel matrix.

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Transforming growth factor-beta1 (TGF-beta1) and bone morphogenetic protein-2 (BMP-2) are abundant proteins in the bone matrix. However, their interaction in controlling osteoblast differentiation is not clearly understood. In this study, HBMSCs were cultured in collagen gel matrix with different condition of exogenous rhBMP-2 and TGF-beta1 in order to determine the interaction of BMP-2 and TGF-beta1 on human bone marrow stromal cells (HBMSCs) differentiation. The cultured cells were analyzed for cell proliferation, alkaline phophatase (ALP) activity and mineralization staining with Von-Kossa. The cells treated with TGF-beta1 exhibited a higher rate of cell growth than those without. However, the cells cultured in collagen gel matrix showed a lower rate of cell growth than the cells cultured in a monolayer. To investigate the effects of both cytokines on osteoblast differentiation, the cells were treated with 0, 1, 5, 10 ng/ml of TGF-beta1 for 2 days. This was followed by culturing with 0, 1, 5, and 10 ng/ml of TGF-beta1 and 100 ng/ml of rhBMP-2 together for 3 days with the alkaline phosphatase (ALP) activity measured. The cells treated with 1 ng/ml of TGF-beta1 responded efficiently to rhBMP-2 and expressed ALP activity with a level equivalent to that exhibited by cells that were not treated with TGF-beta1. The cells treated with 5 and 10 ng/ml of TGF-beta1 showed a dramatic decrease in ALP activity. The cells treated with 10 ng/ml of TGF-beta1 followed by rhBMP-2 alone exhibited an intermediate ALP activity. The cells treated with 100 ng/ml of rhBMP-2 demonstrated Von-Kossa positive solid deposits after 3 weeks, while there were few Von-Kossa positive solid deposits when the cells treated with 10 ng/ml of TGF-beta1. These results show that TGF-beta1 inhibits the effects of rhBMP-2 on the osteoblast differentiation of HBMSCs in a dose dependant manner. Furthermore, the effects of TGF-beta1 on HBMSCs are reversible. This suggest that TGF-beta1 and rhBMP-2 are coordinately controlled during the osteoblast differentiation of HMBSCs.

Original languageEnglish (US)
Pages (from-to)338-344
Number of pages7
JournalYonsei Medical Journal
Volume42
Issue number3
DOIs
StatePublished - Jan 1 2001

Fingerprint

Transforming Growth Factor beta1
Mesenchymal Stromal Cells
Collagen
Gels
Osteoblasts
Cultured Cells
Bone Morphogenetic Protein 2
Cell Differentiation
Bone Matrix
Growth

All Science Journal Classification (ASJC) codes

  • Medicine(all)

Cite this

@article{fa98fef9465b4916840c7a81ebb773ab,
title = "Interaction of TGF-beta1 and rhBMP-2 on human bone marrow stromal cells cultured in collagen gel matrix.",
abstract = "Transforming growth factor-beta1 (TGF-beta1) and bone morphogenetic protein-2 (BMP-2) are abundant proteins in the bone matrix. However, their interaction in controlling osteoblast differentiation is not clearly understood. In this study, HBMSCs were cultured in collagen gel matrix with different condition of exogenous rhBMP-2 and TGF-beta1 in order to determine the interaction of BMP-2 and TGF-beta1 on human bone marrow stromal cells (HBMSCs) differentiation. The cultured cells were analyzed for cell proliferation, alkaline phophatase (ALP) activity and mineralization staining with Von-Kossa. The cells treated with TGF-beta1 exhibited a higher rate of cell growth than those without. However, the cells cultured in collagen gel matrix showed a lower rate of cell growth than the cells cultured in a monolayer. To investigate the effects of both cytokines on osteoblast differentiation, the cells were treated with 0, 1, 5, 10 ng/ml of TGF-beta1 for 2 days. This was followed by culturing with 0, 1, 5, and 10 ng/ml of TGF-beta1 and 100 ng/ml of rhBMP-2 together for 3 days with the alkaline phosphatase (ALP) activity measured. The cells treated with 1 ng/ml of TGF-beta1 responded efficiently to rhBMP-2 and expressed ALP activity with a level equivalent to that exhibited by cells that were not treated with TGF-beta1. The cells treated with 5 and 10 ng/ml of TGF-beta1 showed a dramatic decrease in ALP activity. The cells treated with 10 ng/ml of TGF-beta1 followed by rhBMP-2 alone exhibited an intermediate ALP activity. The cells treated with 100 ng/ml of rhBMP-2 demonstrated Von-Kossa positive solid deposits after 3 weeks, while there were few Von-Kossa positive solid deposits when the cells treated with 10 ng/ml of TGF-beta1. These results show that TGF-beta1 inhibits the effects of rhBMP-2 on the osteoblast differentiation of HBMSCs in a dose dependant manner. Furthermore, the effects of TGF-beta1 on HBMSCs are reversible. This suggest that TGF-beta1 and rhBMP-2 are coordinately controlled during the osteoblast differentiation of HMBSCs.",
author = "Kim, {M. K.} and Christopher Niyibizi",
year = "2001",
month = "1",
day = "1",
doi = "10.3349/ymj.2001.42.3.338",
language = "English (US)",
volume = "42",
pages = "338--344",
journal = "Yonsei Medical Journal",
issn = "0513-5796",
publisher = "Yonsei University College of Medicine",
number = "3",

}

Interaction of TGF-beta1 and rhBMP-2 on human bone marrow stromal cells cultured in collagen gel matrix. / Kim, M. K.; Niyibizi, Christopher.

In: Yonsei Medical Journal, Vol. 42, No. 3, 01.01.2001, p. 338-344.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Interaction of TGF-beta1 and rhBMP-2 on human bone marrow stromal cells cultured in collagen gel matrix.

AU - Kim, M. K.

AU - Niyibizi, Christopher

PY - 2001/1/1

Y1 - 2001/1/1

N2 - Transforming growth factor-beta1 (TGF-beta1) and bone morphogenetic protein-2 (BMP-2) are abundant proteins in the bone matrix. However, their interaction in controlling osteoblast differentiation is not clearly understood. In this study, HBMSCs were cultured in collagen gel matrix with different condition of exogenous rhBMP-2 and TGF-beta1 in order to determine the interaction of BMP-2 and TGF-beta1 on human bone marrow stromal cells (HBMSCs) differentiation. The cultured cells were analyzed for cell proliferation, alkaline phophatase (ALP) activity and mineralization staining with Von-Kossa. The cells treated with TGF-beta1 exhibited a higher rate of cell growth than those without. However, the cells cultured in collagen gel matrix showed a lower rate of cell growth than the cells cultured in a monolayer. To investigate the effects of both cytokines on osteoblast differentiation, the cells were treated with 0, 1, 5, 10 ng/ml of TGF-beta1 for 2 days. This was followed by culturing with 0, 1, 5, and 10 ng/ml of TGF-beta1 and 100 ng/ml of rhBMP-2 together for 3 days with the alkaline phosphatase (ALP) activity measured. The cells treated with 1 ng/ml of TGF-beta1 responded efficiently to rhBMP-2 and expressed ALP activity with a level equivalent to that exhibited by cells that were not treated with TGF-beta1. The cells treated with 5 and 10 ng/ml of TGF-beta1 showed a dramatic decrease in ALP activity. The cells treated with 10 ng/ml of TGF-beta1 followed by rhBMP-2 alone exhibited an intermediate ALP activity. The cells treated with 100 ng/ml of rhBMP-2 demonstrated Von-Kossa positive solid deposits after 3 weeks, while there were few Von-Kossa positive solid deposits when the cells treated with 10 ng/ml of TGF-beta1. These results show that TGF-beta1 inhibits the effects of rhBMP-2 on the osteoblast differentiation of HBMSCs in a dose dependant manner. Furthermore, the effects of TGF-beta1 on HBMSCs are reversible. This suggest that TGF-beta1 and rhBMP-2 are coordinately controlled during the osteoblast differentiation of HMBSCs.

AB - Transforming growth factor-beta1 (TGF-beta1) and bone morphogenetic protein-2 (BMP-2) are abundant proteins in the bone matrix. However, their interaction in controlling osteoblast differentiation is not clearly understood. In this study, HBMSCs were cultured in collagen gel matrix with different condition of exogenous rhBMP-2 and TGF-beta1 in order to determine the interaction of BMP-2 and TGF-beta1 on human bone marrow stromal cells (HBMSCs) differentiation. The cultured cells were analyzed for cell proliferation, alkaline phophatase (ALP) activity and mineralization staining with Von-Kossa. The cells treated with TGF-beta1 exhibited a higher rate of cell growth than those without. However, the cells cultured in collagen gel matrix showed a lower rate of cell growth than the cells cultured in a monolayer. To investigate the effects of both cytokines on osteoblast differentiation, the cells were treated with 0, 1, 5, 10 ng/ml of TGF-beta1 for 2 days. This was followed by culturing with 0, 1, 5, and 10 ng/ml of TGF-beta1 and 100 ng/ml of rhBMP-2 together for 3 days with the alkaline phosphatase (ALP) activity measured. The cells treated with 1 ng/ml of TGF-beta1 responded efficiently to rhBMP-2 and expressed ALP activity with a level equivalent to that exhibited by cells that were not treated with TGF-beta1. The cells treated with 5 and 10 ng/ml of TGF-beta1 showed a dramatic decrease in ALP activity. The cells treated with 10 ng/ml of TGF-beta1 followed by rhBMP-2 alone exhibited an intermediate ALP activity. The cells treated with 100 ng/ml of rhBMP-2 demonstrated Von-Kossa positive solid deposits after 3 weeks, while there were few Von-Kossa positive solid deposits when the cells treated with 10 ng/ml of TGF-beta1. These results show that TGF-beta1 inhibits the effects of rhBMP-2 on the osteoblast differentiation of HBMSCs in a dose dependant manner. Furthermore, the effects of TGF-beta1 on HBMSCs are reversible. This suggest that TGF-beta1 and rhBMP-2 are coordinately controlled during the osteoblast differentiation of HMBSCs.

UR - http://www.scopus.com/inward/record.url?scp=0035374790&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035374790&partnerID=8YFLogxK

U2 - 10.3349/ymj.2001.42.3.338

DO - 10.3349/ymj.2001.42.3.338

M3 - Article

C2 - 11456401

AN - SCOPUS:0035374790

VL - 42

SP - 338

EP - 344

JO - Yonsei Medical Journal

JF - Yonsei Medical Journal

SN - 0513-5796

IS - 3

ER -