Interactive effects of soil temperature and moisture on Concord grape root respiration

Xuming Huang, Alan N. Lakso, David M. Eissenstat

Research output: Contribution to journalArticlepeer-review

70 Scopus citations

Abstract

Root respiration has important implications for understanding plant growth as well as terrestrial carbon flux with a changing climate. Although soil temperature and soil moisture often interact, rarely have these interactions on root respiration been studied. This report is on the individual and combined effects of soil moisture and temperature on respiratory responses of single branch roots of 1-year-old Concord grape (Vitis labruscana Bailey) vines grown in a greenhouse. Under moist soil conditions, root respiration increased exponentially to short-term (1 h) increases in temperature between 10°C and 33°C. Negligible increases in root respiration occurred between 33°C and 38°C. By contrast to a slowly decreasing Q10 from short-term temperature increases, when roots were exposed to constant temperatures for 3 d, the respiratory Q10 between 10°C and 30°C diminished steeply with an increase in temperature. Above 30°C, respiration declined with an increase in temperature. Membrane leakage was 89-98% higher and nitrogen concentration was about 18% lower for roots exposed to 35°C for 3 d than for those exposed to 25°C and 15°C. There was a strong interaction of respiration with a combination of elevated temperature and soil drying. At low soil temperatures (10°C), respiration was little influenced by soil drying, while at moderate to high temperatures (20°C and 30°C), respiration exhibited rapid declines with decreases in soil moisture. Roots exposed to drying soil also exhibited increased membrane leakage and reduced N. These findings of acclimation of root respiration are important to modelling respiration under different moisture and temperature regimes.

Original languageEnglish (US)
Pages (from-to)2651-2660
Number of pages10
JournalJournal of experimental botany
Volume56
Issue number420
DOIs
StatePublished - Oct 2005

All Science Journal Classification (ASJC) codes

  • Physiology
  • Plant Science

Fingerprint Dive into the research topics of 'Interactive effects of soil temperature and moisture on Concord grape root respiration'. Together they form a unique fingerprint.

Cite this