Intra-session reliability of local dynamic stability of walking

Hyun Gu Kang, Jonathan B. Dingwell

Research output: Contribution to journalArticlepeer-review

50 Scopus citations


While local dynamic stability measures have been successfully used to characterize walking stability, they require long continuous walking data, which may be difficult to obtain from a clinical population. We investigated the amount of walking data necessary to obtain reliable measures of local dynamic stability. Twenty healthy adults walked on a motorized treadmill at their self-selected speed for three trials of 5 min each. Trunk motion was used to construct a 12-dimensional state space comprised of the linear and angular positions and velocities. Mean divergence of locally perturbed trajectories was calculated as a measure of local dynamic stability using the first 1-5 min of data from each trial. Exponential divergence rates were quantified. Divergence was also parameterized using a double-exponential function. Intra-class correlation coefficients ICC(2,1) were calculated for each divergence measure for each trial length. ICC(2, 1) values increased with trial length, and reached 0.5-0.9. Good reliability was obtained for short-term measures for trial lengths of 2 and 3 min, but 5 min was not adequate to estimate the long-term coefficients based on a single trial.

Original languageEnglish (US)
Pages (from-to)386-390
Number of pages5
JournalGait and Posture
Issue number3
StatePublished - Nov 2006

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Orthopedics and Sports Medicine
  • Rehabilitation


Dive into the research topics of 'Intra-session reliability of local dynamic stability of walking'. Together they form a unique fingerprint.

Cite this