Investigation of The Basis of The Valence Shell Electron Pair Repulsion Model By Ab Initio Calculation of Geometry Variations In A Series of Tetrahedral and Related Molecules

Ann Schmiedekamp, D. W.J. Cruickshank, Steen Skaarup, Peter Pulay, István Hargittai, James Boggs

Research output: Contribution to journalArticle

65 Scopus citations

Abstract

Energy-optimized geometries were calculated ab initio for NH3, NF3. OH2, OF2, PH3, PF3, SH2. SF2, SO2, SOF2, SOH2, SO2H2> HSF, SH3+, NH2-, NF2-, and NH4+using consistent basis sets and optimization criteria. An understanding of the predictions of the valence shell electron pair repulsion (VSEPR) model was sought by a comparison of the calculated geometries and various properties of the localized bonding and lone-pair orbitals. The calculated relative sizes of bonds and lone pairs agreed very well with the VSEPR assumptions. Some apparent failures of the VSEPR model can be explained by examining the total angular space requirements of the bond and lone-pair orbitals, rather than restricting attention only to the angles formed between bonds. An extensive investigation was made of the effect of polarization functions in the basis set both on calculated geometries and on the properties of the resulting localized orbitals.

Original languageEnglish (US)
Pages (from-to)2002-2010
Number of pages9
JournalJournal of the American Chemical Society
Volume101
Issue number8
DOIs
StatePublished - Feb 1 1979

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'Investigation of The Basis of The Valence Shell Electron Pair Repulsion Model By Ab Initio Calculation of Geometry Variations In A Series of Tetrahedral and Related Molecules'. Together they form a unique fingerprint.

  • Cite this