Iron carburization in CO-H 2-He gases, part II: Numerical model

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


A numerical model for the carburization of iron in CO-H 2-He mixtures was developed and compared with experimental data over the temperature range of 850°C-1150°C, CO partial pressures from 1% to 12%, and H 2 partial pressures from 5% to 99%. The reaction mechanism was established on the basis of data input from recent quantum mechanical and molecular dynamics calculations as well as from rate constant estimates from kinetic and transition state theory. Sensitivity and reaction flux analyses were performed to identify the rate-controlling and fastest reactions. Model predictions of carbon weight gain in iron samples versus time were compared with experimental data. The most sensitive reactions were refined by least-squares fitting the model to the experiment. The resulting model can simulate and predict the trends of iron carburization in CO-H 2-He-C0 2-H 2O mixtures for most conditions studied experimentally. Critical reactions and model parameters are identified for additional study to improve the model and understanding of the carburization mechanism.

Original languageEnglish (US)
Pages (from-to)337-348
Number of pages12
JournalInternational Journal of Chemical Kinetics
Issue number5
StatePublished - May 2009

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry


Dive into the research topics of 'Iron carburization in CO-H 2-He gases, part II: Numerical model'. Together they form a unique fingerprint.

Cite this