Is the atmospheric zonal index driven by an eddy feedback?

Research output: Contribution to journalArticle

94 Citations (Scopus)

Abstract

The authors address the question of whether or not eddy feedback plays an important role in driving the anomalous relative angular momentum associated with the zonal index (ZI) in the atmosphere. For this purpose, composites of anomaulous relative angular momentum and anomalous eddy angular momentum flux convergence (eddy forcing) are examined with National Centers for Environmental Prediction-National Center for Atmospheric Research Reanalysis data. By using an empirical orthogonal function analysis, it is found that ZI behavior dominates the summer season of both hemispheres and also the winter season of the Southern Hemisphere. For the summer season, the ZI is characterized by meridional displacements of the mildlatitude eddy-driven jet, and for the Southern Hemisphere winter it is characterized by a simultaneous movement of the subtropical and eddy-driven jets in the opposite direction. For the ZI of each of the above seasons, unfiltered eddy forcing did not exhibit a prominent eddy feedback. However, suggestive evidence for a feedback by high-fraquency eddies (period less than 10 days) was found. These eddies aliect to prolong the lifetime of the ZI anomas against the dissipative influences of both low-frequency (period reater than 10 days) and cross-frequency (eddy fluxes that involve the product of high- and low-frequency disturbances) eddy forcing and the friction torque.

Original languageEnglish (US)
Pages (from-to)3077-3086
Number of pages10
JournalJournal of the Atmospheric Sciences
Volume55
Issue number19
DOIs
StatePublished - Oct 1 1998

Fingerprint

eddy
angular momentum
Southern Hemisphere
index
winter
summer
torque
friction
disturbance
atmosphere
prediction

All Science Journal Classification (ASJC) codes

  • Atmospheric Science

Cite this

@article{004e94fbe7ac41c6ae3e3e5a13444cd0,
title = "Is the atmospheric zonal index driven by an eddy feedback?",
abstract = "The authors address the question of whether or not eddy feedback plays an important role in driving the anomalous relative angular momentum associated with the zonal index (ZI) in the atmosphere. For this purpose, composites of anomaulous relative angular momentum and anomalous eddy angular momentum flux convergence (eddy forcing) are examined with National Centers for Environmental Prediction-National Center for Atmospheric Research Reanalysis data. By using an empirical orthogonal function analysis, it is found that ZI behavior dominates the summer season of both hemispheres and also the winter season of the Southern Hemisphere. For the summer season, the ZI is characterized by meridional displacements of the mildlatitude eddy-driven jet, and for the Southern Hemisphere winter it is characterized by a simultaneous movement of the subtropical and eddy-driven jets in the opposite direction. For the ZI of each of the above seasons, unfiltered eddy forcing did not exhibit a prominent eddy feedback. However, suggestive evidence for a feedback by high-fraquency eddies (period less than 10 days) was found. These eddies aliect to prolong the lifetime of the ZI anomas against the dissipative influences of both low-frequency (period reater than 10 days) and cross-frequency (eddy fluxes that involve the product of high- and low-frequency disturbances) eddy forcing and the friction torque.",
author = "Feldstein, {Steven B.} and Sukyoung Lee",
year = "1998",
month = "10",
day = "1",
doi = "10.1175/1520-0469(1998)055<3077:ITAZID>2.0.CO;2",
language = "English (US)",
volume = "55",
pages = "3077--3086",
journal = "Journals of the Atmospheric Sciences",
issn = "0022-4928",
publisher = "American Meteorological Society",
number = "19",

}

Is the atmospheric zonal index driven by an eddy feedback? / Feldstein, Steven B.; Lee, Sukyoung.

In: Journal of the Atmospheric Sciences, Vol. 55, No. 19, 01.10.1998, p. 3077-3086.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Is the atmospheric zonal index driven by an eddy feedback?

AU - Feldstein, Steven B.

AU - Lee, Sukyoung

PY - 1998/10/1

Y1 - 1998/10/1

N2 - The authors address the question of whether or not eddy feedback plays an important role in driving the anomalous relative angular momentum associated with the zonal index (ZI) in the atmosphere. For this purpose, composites of anomaulous relative angular momentum and anomalous eddy angular momentum flux convergence (eddy forcing) are examined with National Centers for Environmental Prediction-National Center for Atmospheric Research Reanalysis data. By using an empirical orthogonal function analysis, it is found that ZI behavior dominates the summer season of both hemispheres and also the winter season of the Southern Hemisphere. For the summer season, the ZI is characterized by meridional displacements of the mildlatitude eddy-driven jet, and for the Southern Hemisphere winter it is characterized by a simultaneous movement of the subtropical and eddy-driven jets in the opposite direction. For the ZI of each of the above seasons, unfiltered eddy forcing did not exhibit a prominent eddy feedback. However, suggestive evidence for a feedback by high-fraquency eddies (period less than 10 days) was found. These eddies aliect to prolong the lifetime of the ZI anomas against the dissipative influences of both low-frequency (period reater than 10 days) and cross-frequency (eddy fluxes that involve the product of high- and low-frequency disturbances) eddy forcing and the friction torque.

AB - The authors address the question of whether or not eddy feedback plays an important role in driving the anomalous relative angular momentum associated with the zonal index (ZI) in the atmosphere. For this purpose, composites of anomaulous relative angular momentum and anomalous eddy angular momentum flux convergence (eddy forcing) are examined with National Centers for Environmental Prediction-National Center for Atmospheric Research Reanalysis data. By using an empirical orthogonal function analysis, it is found that ZI behavior dominates the summer season of both hemispheres and also the winter season of the Southern Hemisphere. For the summer season, the ZI is characterized by meridional displacements of the mildlatitude eddy-driven jet, and for the Southern Hemisphere winter it is characterized by a simultaneous movement of the subtropical and eddy-driven jets in the opposite direction. For the ZI of each of the above seasons, unfiltered eddy forcing did not exhibit a prominent eddy feedback. However, suggestive evidence for a feedback by high-fraquency eddies (period less than 10 days) was found. These eddies aliect to prolong the lifetime of the ZI anomas against the dissipative influences of both low-frequency (period reater than 10 days) and cross-frequency (eddy fluxes that involve the product of high- and low-frequency disturbances) eddy forcing and the friction torque.

UR - http://www.scopus.com/inward/record.url?scp=0032455068&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032455068&partnerID=8YFLogxK

U2 - 10.1175/1520-0469(1998)055<3077:ITAZID>2.0.CO;2

DO - 10.1175/1520-0469(1998)055<3077:ITAZID>2.0.CO;2

M3 - Article

VL - 55

SP - 3077

EP - 3086

JO - Journals of the Atmospheric Sciences

JF - Journals of the Atmospheric Sciences

SN - 0022-4928

IS - 19

ER -