Is the thumb a fifth finger? A study of digit interaction during force production tasks

Halla Olafsdottir, Vladimir M. Zatsiorsky, Mark Latash

Research output: Contribution to journalArticle

31 Citations (Scopus)

Abstract

We studied indices of digit interaction in single-and multi-digit maximal voluntary contraction (MVC) tests when the thumb acted either in parallel or in opposition to the fingers. The peak force produced by the thumb was much higher when the thumb acted in opposition to the fingers and its share of the total force in the five-digit MVC test increased dramatically. The fingers showed relatively similar peak forces and unchanged sharing patterns in the four-finger MVC task when the thumb acted in parallel and in opposition to the fingers. Enslaving during one-digit tasks showed relatively mild differences between the two conditions, while the differences became large when enslaving was quantified for multi-digit tasks. Force deficit was pronounced when the thumb acted in parallel to the fingers; it showed a monotonic increase with the number of explicitly involved digits up to four digits and then a drop when all five digits were involved. Force deficit all but disappeared when the thumb acted in opposition to the fingers. However, for both thumb positions, indices of digit interaction were similar for groups of digits that did or did not include the thumb. These results suggest that, given a certain hand configuration, the central nervous system treats the thumb as a fifth finger. They provide strong support for the hypothesis that indices of digit interaction reflect neural factors, not the peripheral design of the hand. An earlier formal model was able to account for the data when the thumb acted in parallel to the fingers. However, it failed for the data with the thumb acting in opposition to the fingers.

Original languageEnglish (US)
Pages (from-to)203-213
Number of pages11
JournalExperimental Brain Research
Volume160
Issue number2
DOIs
StatePublished - Jan 1 2005

Fingerprint

Thumb
Advisory Committees
Fingers
Hand
Central Nervous System

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)

Cite this

Olafsdottir, Halla ; Zatsiorsky, Vladimir M. ; Latash, Mark. / Is the thumb a fifth finger? A study of digit interaction during force production tasks. In: Experimental Brain Research. 2005 ; Vol. 160, No. 2. pp. 203-213.
@article{ee34f766b17d4733b1cf47dbbf0bb4d5,
title = "Is the thumb a fifth finger? A study of digit interaction during force production tasks",
abstract = "We studied indices of digit interaction in single-and multi-digit maximal voluntary contraction (MVC) tests when the thumb acted either in parallel or in opposition to the fingers. The peak force produced by the thumb was much higher when the thumb acted in opposition to the fingers and its share of the total force in the five-digit MVC test increased dramatically. The fingers showed relatively similar peak forces and unchanged sharing patterns in the four-finger MVC task when the thumb acted in parallel and in opposition to the fingers. Enslaving during one-digit tasks showed relatively mild differences between the two conditions, while the differences became large when enslaving was quantified for multi-digit tasks. Force deficit was pronounced when the thumb acted in parallel to the fingers; it showed a monotonic increase with the number of explicitly involved digits up to four digits and then a drop when all five digits were involved. Force deficit all but disappeared when the thumb acted in opposition to the fingers. However, for both thumb positions, indices of digit interaction were similar for groups of digits that did or did not include the thumb. These results suggest that, given a certain hand configuration, the central nervous system treats the thumb as a fifth finger. They provide strong support for the hypothesis that indices of digit interaction reflect neural factors, not the peripheral design of the hand. An earlier formal model was able to account for the data when the thumb acted in parallel to the fingers. However, it failed for the data with the thumb acting in opposition to the fingers.",
author = "Halla Olafsdottir and Zatsiorsky, {Vladimir M.} and Mark Latash",
year = "2005",
month = "1",
day = "1",
doi = "10.1007/s00221-004-2004-0",
language = "English (US)",
volume = "160",
pages = "203--213",
journal = "Experimental Brain Research",
issn = "0014-4819",
publisher = "Springer Verlag",
number = "2",

}

Is the thumb a fifth finger? A study of digit interaction during force production tasks. / Olafsdottir, Halla; Zatsiorsky, Vladimir M.; Latash, Mark.

In: Experimental Brain Research, Vol. 160, No. 2, 01.01.2005, p. 203-213.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Is the thumb a fifth finger? A study of digit interaction during force production tasks

AU - Olafsdottir, Halla

AU - Zatsiorsky, Vladimir M.

AU - Latash, Mark

PY - 2005/1/1

Y1 - 2005/1/1

N2 - We studied indices of digit interaction in single-and multi-digit maximal voluntary contraction (MVC) tests when the thumb acted either in parallel or in opposition to the fingers. The peak force produced by the thumb was much higher when the thumb acted in opposition to the fingers and its share of the total force in the five-digit MVC test increased dramatically. The fingers showed relatively similar peak forces and unchanged sharing patterns in the four-finger MVC task when the thumb acted in parallel and in opposition to the fingers. Enslaving during one-digit tasks showed relatively mild differences between the two conditions, while the differences became large when enslaving was quantified for multi-digit tasks. Force deficit was pronounced when the thumb acted in parallel to the fingers; it showed a monotonic increase with the number of explicitly involved digits up to four digits and then a drop when all five digits were involved. Force deficit all but disappeared when the thumb acted in opposition to the fingers. However, for both thumb positions, indices of digit interaction were similar for groups of digits that did or did not include the thumb. These results suggest that, given a certain hand configuration, the central nervous system treats the thumb as a fifth finger. They provide strong support for the hypothesis that indices of digit interaction reflect neural factors, not the peripheral design of the hand. An earlier formal model was able to account for the data when the thumb acted in parallel to the fingers. However, it failed for the data with the thumb acting in opposition to the fingers.

AB - We studied indices of digit interaction in single-and multi-digit maximal voluntary contraction (MVC) tests when the thumb acted either in parallel or in opposition to the fingers. The peak force produced by the thumb was much higher when the thumb acted in opposition to the fingers and its share of the total force in the five-digit MVC test increased dramatically. The fingers showed relatively similar peak forces and unchanged sharing patterns in the four-finger MVC task when the thumb acted in parallel and in opposition to the fingers. Enslaving during one-digit tasks showed relatively mild differences between the two conditions, while the differences became large when enslaving was quantified for multi-digit tasks. Force deficit was pronounced when the thumb acted in parallel to the fingers; it showed a monotonic increase with the number of explicitly involved digits up to four digits and then a drop when all five digits were involved. Force deficit all but disappeared when the thumb acted in opposition to the fingers. However, for both thumb positions, indices of digit interaction were similar for groups of digits that did or did not include the thumb. These results suggest that, given a certain hand configuration, the central nervous system treats the thumb as a fifth finger. They provide strong support for the hypothesis that indices of digit interaction reflect neural factors, not the peripheral design of the hand. An earlier formal model was able to account for the data when the thumb acted in parallel to the fingers. However, it failed for the data with the thumb acting in opposition to the fingers.

UR - http://www.scopus.com/inward/record.url?scp=12144263267&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=12144263267&partnerID=8YFLogxK

U2 - 10.1007/s00221-004-2004-0

DO - 10.1007/s00221-004-2004-0

M3 - Article

C2 - 15322785

AN - SCOPUS:12144263267

VL - 160

SP - 203

EP - 213

JO - Experimental Brain Research

JF - Experimental Brain Research

SN - 0014-4819

IS - 2

ER -