Is there a signal of sea-level rise in Chesapeake Bay salinity?

T. W. Hilton, R. G. Najjar, L. Zhong, M. Li

Research output: Contribution to journalArticlepeer-review

67 Scopus citations


We evaluate the hypothesis that sea-level rise over the second half of the 20th century has led to detectable increases in Chesapeake Bay salinity. We exploit a simple, statistical model that predicts monthly mean salinity as a function of Susquehanna River flow in 23 segments of the main stem Chesapeake Bay. The residual (observed minus modeled) salinity exhibits statistically significant linear (p < 0.05) trends between 1949 and 2006 in 13 of the 23 segments of the bay. The salinity change estimated from the trend line over this period varies from -2.0 to 2.2, with 10 of the 13 cells showing positive changes. The mean and median salinity changes over all 23 cells are 0.47 and 0.72; over the 13 cells with significant trends they are 0.71 and 1.1. We ran a hydrodynamic model of the bay under present-day and reduced sea level conditions and found a bay-average salinity increase of about 0.5, which supports the hypothesis that the salinity residual trends have a significant component due to sea-level rise. Uncertainties remain, however, due to the spatial and temporal extent of historical salinity data and the infilling of the bay due to sedimentation. The salinity residuals also exhibit interannual variability, with peaks occurring at intervals of roughly 7 to 9 years, which are partially explained by Atlantic Shelf salinity, Potomac River flow and the meridional component of wind stress.

Original languageEnglish (US)
Article numberC09002
JournalJournal of Geophysical Research: Oceans
Issue number9
StatePublished - Sep 8 2008

All Science Journal Classification (ASJC) codes

  • Geochemistry and Petrology
  • Geophysics
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Oceanography


Dive into the research topics of 'Is there a signal of sea-level rise in Chesapeake Bay salinity?'. Together they form a unique fingerprint.

Cite this