Iterating evolutes of spacial polygons and of spacial curves

Dmitry Fuchs, Sergei Tabachnikov

Research output: Contribution to journalArticle

Abstract

The evolute of a smooth curve in an m-dimensional Eu-clidean space is the locus of centers of its osculating spheres, and the evolute of a spacial polygon is the polygon whose consecutive vertices are the centers of the spheres through the consecutive (m+1)-tuples of vertices of the original polygon. We study the iterations of these evo-lute transformations. This work continues the recent study of similar problems in dimension two. Here is a sampler of our results. The set of n-gons with fixed directions of the sides, considered up to parallel translation, is an (n-m)-dimensional vector space, and the second evolute transformation is a linear map of this space. If n = m+2, then the second evolute is homothetic to the original polygon, and if n = m+ 3, then the first and the third evolutes are homothetic. In general, each non-zero eigenvalue of the second evolute map has even multiplicity. We also study curves, with cusps, in 3-dimensional Euclidean space and their evolutes. We provide continuous analogs of the results obtained for polygons, and present a class of curves which are homothetic to their second evolutes; these curves are spacial analogs of the classical hypocycloids.

Original languageEnglish (US)
Pages (from-to)667-689
Number of pages23
JournalMoscow Mathematical Journal
Volume17
Issue number4
StatePublished - Oct 1 2017

Fingerprint

Evolute
Polygon
Curve
Consecutive
Hypocycloid
Analogue
Linear map
Cusp
Vector space
Locus
Euclidean space
Multiplicity
Two Dimensions
Continue
Eigenvalue
Iteration

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Cite this

@article{19d9c37e6e3a4d4aaa26e0c739b98b8e,
title = "Iterating evolutes of spacial polygons and of spacial curves",
abstract = "The evolute of a smooth curve in an m-dimensional Eu-clidean space is the locus of centers of its osculating spheres, and the evolute of a spacial polygon is the polygon whose consecutive vertices are the centers of the spheres through the consecutive (m+1)-tuples of vertices of the original polygon. We study the iterations of these evo-lute transformations. This work continues the recent study of similar problems in dimension two. Here is a sampler of our results. The set of n-gons with fixed directions of the sides, considered up to parallel translation, is an (n-m)-dimensional vector space, and the second evolute transformation is a linear map of this space. If n = m+2, then the second evolute is homothetic to the original polygon, and if n = m+ 3, then the first and the third evolutes are homothetic. In general, each non-zero eigenvalue of the second evolute map has even multiplicity. We also study curves, with cusps, in 3-dimensional Euclidean space and their evolutes. We provide continuous analogs of the results obtained for polygons, and present a class of curves which are homothetic to their second evolutes; these curves are spacial analogs of the classical hypocycloids.",
author = "Dmitry Fuchs and Sergei Tabachnikov",
year = "2017",
month = "10",
day = "1",
language = "English (US)",
volume = "17",
pages = "667--689",
journal = "Moscow Mathematical Journal",
issn = "1609-3321",
publisher = "Independent University of Moscow",
number = "4",

}

Iterating evolutes of spacial polygons and of spacial curves. / Fuchs, Dmitry; Tabachnikov, Sergei.

In: Moscow Mathematical Journal, Vol. 17, No. 4, 01.10.2017, p. 667-689.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Iterating evolutes of spacial polygons and of spacial curves

AU - Fuchs, Dmitry

AU - Tabachnikov, Sergei

PY - 2017/10/1

Y1 - 2017/10/1

N2 - The evolute of a smooth curve in an m-dimensional Eu-clidean space is the locus of centers of its osculating spheres, and the evolute of a spacial polygon is the polygon whose consecutive vertices are the centers of the spheres through the consecutive (m+1)-tuples of vertices of the original polygon. We study the iterations of these evo-lute transformations. This work continues the recent study of similar problems in dimension two. Here is a sampler of our results. The set of n-gons with fixed directions of the sides, considered up to parallel translation, is an (n-m)-dimensional vector space, and the second evolute transformation is a linear map of this space. If n = m+2, then the second evolute is homothetic to the original polygon, and if n = m+ 3, then the first and the third evolutes are homothetic. In general, each non-zero eigenvalue of the second evolute map has even multiplicity. We also study curves, with cusps, in 3-dimensional Euclidean space and their evolutes. We provide continuous analogs of the results obtained for polygons, and present a class of curves which are homothetic to their second evolutes; these curves are spacial analogs of the classical hypocycloids.

AB - The evolute of a smooth curve in an m-dimensional Eu-clidean space is the locus of centers of its osculating spheres, and the evolute of a spacial polygon is the polygon whose consecutive vertices are the centers of the spheres through the consecutive (m+1)-tuples of vertices of the original polygon. We study the iterations of these evo-lute transformations. This work continues the recent study of similar problems in dimension two. Here is a sampler of our results. The set of n-gons with fixed directions of the sides, considered up to parallel translation, is an (n-m)-dimensional vector space, and the second evolute transformation is a linear map of this space. If n = m+2, then the second evolute is homothetic to the original polygon, and if n = m+ 3, then the first and the third evolutes are homothetic. In general, each non-zero eigenvalue of the second evolute map has even multiplicity. We also study curves, with cusps, in 3-dimensional Euclidean space and their evolutes. We provide continuous analogs of the results obtained for polygons, and present a class of curves which are homothetic to their second evolutes; these curves are spacial analogs of the classical hypocycloids.

UR - http://www.scopus.com/inward/record.url?scp=85036583361&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85036583361&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:85036583361

VL - 17

SP - 667

EP - 689

JO - Moscow Mathematical Journal

JF - Moscow Mathematical Journal

SN - 1609-3321

IS - 4

ER -