Joint basal and pulsatile hypersecretory mechanisms drive the monotropic follicle-stimulating hormone (FSH) elevation in healthy older men

Concurrent preservation of the orderliness of the FSH release process: A general clinical research center study

J. D. Veldhuis, A. Iranmanesh, Laurence Demers, T. Mulligan

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

To appraise the neuroendocrine mechanisms that underlie a selective (monotropic) elevation of serum FSH concentrations in healthy older men, we sampled blood in 11 young (ages 21-34) and 8 older men (ages 62-72) men every 2.5 min overnight. Serum FSH concentrations were quantitated in an automated, high-sensitivity, chemiluminescence-based assay. Rates of basal and pulsatile FSH secretion were estimated by deconvolution analysis, and the orderliness of the FSH release process via quantitated the approximate entropy statistic. Statistical analysis revealed that healthy older men manifest dual neuroendocrine hypersecretory mechanisims; specifically, a 2-fold increase in the basel (nonpulsatile) FSH secretion rate, and a concurrent 50% amplification of FSH secretory burst mass (and amplitude). The regularity or orderliness of ad seriatim FSH release is preserved in older individuals. We postulate that higher basel FSH secretion in older men is a consequence of reduced testosterone negative feedback, whereas amplified FSH secretory burst mass reflects net enhanced stimulation of gonadotrope cells by endogenous FSH secretagogues (e.g. GnRH and/or activin). The foregoing specific mechanisms driving heightened FSH secretion in older men contrast with the lower-amplitude pulsatility and more disorderly patterns of LH release in the same individuals. Thus, the present data illuminate an age-dependent disparity in the disruption of FSH neuroregulation in the aging male.

Original languageEnglish (US)
Pages (from-to)3506-3514
Number of pages9
JournalJournal of Clinical Endocrinology and Metabolism
Volume84
Issue number10
StatePublished - Dec 1 1999

Fingerprint

Follicle Stimulating Hormone
Joints
Research
Activins
Chemiluminescence
Entropy
Deconvolution
Luminescence
Serum
Gonadotropin-Releasing Hormone
Amplification
Testosterone
Assays
Statistical methods
Blood
Aging of materials
Statistics
Feedback

All Science Journal Classification (ASJC) codes

  • Endocrinology, Diabetes and Metabolism
  • Biochemistry
  • Endocrinology
  • Clinical Biochemistry
  • Biochemistry, medical

Cite this

@article{55a90b70faa4472ea6352f743f6ea13a,
title = "Joint basal and pulsatile hypersecretory mechanisms drive the monotropic follicle-stimulating hormone (FSH) elevation in healthy older men: Concurrent preservation of the orderliness of the FSH release process: A general clinical research center study",
abstract = "To appraise the neuroendocrine mechanisms that underlie a selective (monotropic) elevation of serum FSH concentrations in healthy older men, we sampled blood in 11 young (ages 21-34) and 8 older men (ages 62-72) men every 2.5 min overnight. Serum FSH concentrations were quantitated in an automated, high-sensitivity, chemiluminescence-based assay. Rates of basal and pulsatile FSH secretion were estimated by deconvolution analysis, and the orderliness of the FSH release process via quantitated the approximate entropy statistic. Statistical analysis revealed that healthy older men manifest dual neuroendocrine hypersecretory mechanisims; specifically, a 2-fold increase in the basel (nonpulsatile) FSH secretion rate, and a concurrent 50{\%} amplification of FSH secretory burst mass (and amplitude). The regularity or orderliness of ad seriatim FSH release is preserved in older individuals. We postulate that higher basel FSH secretion in older men is a consequence of reduced testosterone negative feedback, whereas amplified FSH secretory burst mass reflects net enhanced stimulation of gonadotrope cells by endogenous FSH secretagogues (e.g. GnRH and/or activin). The foregoing specific mechanisms driving heightened FSH secretion in older men contrast with the lower-amplitude pulsatility and more disorderly patterns of LH release in the same individuals. Thus, the present data illuminate an age-dependent disparity in the disruption of FSH neuroregulation in the aging male.",
author = "Veldhuis, {J. D.} and A. Iranmanesh and Laurence Demers and T. Mulligan",
year = "1999",
month = "12",
day = "1",
language = "English (US)",
volume = "84",
pages = "3506--3514",
journal = "Journal of Clinical Endocrinology and Metabolism",
issn = "0021-972X",
publisher = "The Endocrine Society",
number = "10",

}

TY - JOUR

T1 - Joint basal and pulsatile hypersecretory mechanisms drive the monotropic follicle-stimulating hormone (FSH) elevation in healthy older men

T2 - Concurrent preservation of the orderliness of the FSH release process: A general clinical research center study

AU - Veldhuis, J. D.

AU - Iranmanesh, A.

AU - Demers, Laurence

AU - Mulligan, T.

PY - 1999/12/1

Y1 - 1999/12/1

N2 - To appraise the neuroendocrine mechanisms that underlie a selective (monotropic) elevation of serum FSH concentrations in healthy older men, we sampled blood in 11 young (ages 21-34) and 8 older men (ages 62-72) men every 2.5 min overnight. Serum FSH concentrations were quantitated in an automated, high-sensitivity, chemiluminescence-based assay. Rates of basal and pulsatile FSH secretion were estimated by deconvolution analysis, and the orderliness of the FSH release process via quantitated the approximate entropy statistic. Statistical analysis revealed that healthy older men manifest dual neuroendocrine hypersecretory mechanisims; specifically, a 2-fold increase in the basel (nonpulsatile) FSH secretion rate, and a concurrent 50% amplification of FSH secretory burst mass (and amplitude). The regularity or orderliness of ad seriatim FSH release is preserved in older individuals. We postulate that higher basel FSH secretion in older men is a consequence of reduced testosterone negative feedback, whereas amplified FSH secretory burst mass reflects net enhanced stimulation of gonadotrope cells by endogenous FSH secretagogues (e.g. GnRH and/or activin). The foregoing specific mechanisms driving heightened FSH secretion in older men contrast with the lower-amplitude pulsatility and more disorderly patterns of LH release in the same individuals. Thus, the present data illuminate an age-dependent disparity in the disruption of FSH neuroregulation in the aging male.

AB - To appraise the neuroendocrine mechanisms that underlie a selective (monotropic) elevation of serum FSH concentrations in healthy older men, we sampled blood in 11 young (ages 21-34) and 8 older men (ages 62-72) men every 2.5 min overnight. Serum FSH concentrations were quantitated in an automated, high-sensitivity, chemiluminescence-based assay. Rates of basal and pulsatile FSH secretion were estimated by deconvolution analysis, and the orderliness of the FSH release process via quantitated the approximate entropy statistic. Statistical analysis revealed that healthy older men manifest dual neuroendocrine hypersecretory mechanisims; specifically, a 2-fold increase in the basel (nonpulsatile) FSH secretion rate, and a concurrent 50% amplification of FSH secretory burst mass (and amplitude). The regularity or orderliness of ad seriatim FSH release is preserved in older individuals. We postulate that higher basel FSH secretion in older men is a consequence of reduced testosterone negative feedback, whereas amplified FSH secretory burst mass reflects net enhanced stimulation of gonadotrope cells by endogenous FSH secretagogues (e.g. GnRH and/or activin). The foregoing specific mechanisms driving heightened FSH secretion in older men contrast with the lower-amplitude pulsatility and more disorderly patterns of LH release in the same individuals. Thus, the present data illuminate an age-dependent disparity in the disruption of FSH neuroregulation in the aging male.

UR - http://www.scopus.com/inward/record.url?scp=0033305380&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033305380&partnerID=8YFLogxK

M3 - Article

VL - 84

SP - 3506

EP - 3514

JO - Journal of Clinical Endocrinology and Metabolism

JF - Journal of Clinical Endocrinology and Metabolism

SN - 0021-972X

IS - 10

ER -