Joint blind channel estimation and interference suppression for OFDM systems

Khaled Amleh, Hongbin Li

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper presents a blind joint channel and interference suppression for orthogonal frequency-division multiplexing (OFDM) systems. Our approach uses a generalized multi-channel minimum variance principle to design an equalizing filterbank that preserves the desired signal components and suppresses the overall interference. Channel estimate is then obtained by deriving an asymptotically tight lower bound of the filterbank output power, which reduces the problem to a quadratic minimization. While a channel estimate may be obtained by directly maximizing the filterbank output power through multidimensional nonlinear searches, such an approach is computationally prohibitive and suffers local convergence. Numerical examples show that the proposed scheme approaches the Cramér-Rao bound (CRB) as the SNR increases. It also exhibits low sensitivity to unknown narrowband interference and compares favorably with a subspace blind channel estimator.

Original languageEnglish (US)
Title of host publication2005 IEEE International Conference on Acoustics, Speech, and Signal Processing,ICASSP '05 - Proceedings - Audio and ElectroacousticsSignal Processing for Communication
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Print)0780388747, 9780780388741
DOIs
StatePublished - Jan 1 2005
Event2005 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '05 - Philadelphia, PA, United States
Duration: Mar 18 2005Mar 23 2005

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
VolumeIII
ISSN (Print)1520-6149

Other

Other2005 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '05
CountryUnited States
CityPhiladelphia, PA
Period3/18/053/23/05

Fingerprint

Interference suppression
Channel estimation
Orthogonal frequency division multiplexing

All Science Journal Classification (ASJC) codes

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Cite this

Amleh, K., & Li, H. (2005). Joint blind channel estimation and interference suppression for OFDM systems. In 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing,ICASSP '05 - Proceedings - Audio and ElectroacousticsSignal Processing for Communication [1415747] (ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings; Vol. III). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ICASSP.2005.1415747
Amleh, Khaled ; Li, Hongbin. / Joint blind channel estimation and interference suppression for OFDM systems. 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing,ICASSP '05 - Proceedings - Audio and ElectroacousticsSignal Processing for Communication. Institute of Electrical and Electronics Engineers Inc., 2005. (ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings).
@inproceedings{f14d089b90f64f9abdc851600ae8ecad,
title = "Joint blind channel estimation and interference suppression for OFDM systems",
abstract = "This paper presents a blind joint channel and interference suppression for orthogonal frequency-division multiplexing (OFDM) systems. Our approach uses a generalized multi-channel minimum variance principle to design an equalizing filterbank that preserves the desired signal components and suppresses the overall interference. Channel estimate is then obtained by deriving an asymptotically tight lower bound of the filterbank output power, which reduces the problem to a quadratic minimization. While a channel estimate may be obtained by directly maximizing the filterbank output power through multidimensional nonlinear searches, such an approach is computationally prohibitive and suffers local convergence. Numerical examples show that the proposed scheme approaches the Cram{\'e}r-Rao bound (CRB) as the SNR increases. It also exhibits low sensitivity to unknown narrowband interference and compares favorably with a subspace blind channel estimator.",
author = "Khaled Amleh and Hongbin Li",
year = "2005",
month = "1",
day = "1",
doi = "10.1109/ICASSP.2005.1415747",
language = "English (US)",
isbn = "0780388747",
series = "ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
booktitle = "2005 IEEE International Conference on Acoustics, Speech, and Signal Processing,ICASSP '05 - Proceedings - Audio and ElectroacousticsSignal Processing for Communication",
address = "United States",

}

Amleh, K & Li, H 2005, Joint blind channel estimation and interference suppression for OFDM systems. in 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing,ICASSP '05 - Proceedings - Audio and ElectroacousticsSignal Processing for Communication., 1415747, ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, vol. III, Institute of Electrical and Electronics Engineers Inc., 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '05, Philadelphia, PA, United States, 3/18/05. https://doi.org/10.1109/ICASSP.2005.1415747

Joint blind channel estimation and interference suppression for OFDM systems. / Amleh, Khaled; Li, Hongbin.

2005 IEEE International Conference on Acoustics, Speech, and Signal Processing,ICASSP '05 - Proceedings - Audio and ElectroacousticsSignal Processing for Communication. Institute of Electrical and Electronics Engineers Inc., 2005. 1415747 (ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings; Vol. III).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

TY - GEN

T1 - Joint blind channel estimation and interference suppression for OFDM systems

AU - Amleh, Khaled

AU - Li, Hongbin

PY - 2005/1/1

Y1 - 2005/1/1

N2 - This paper presents a blind joint channel and interference suppression for orthogonal frequency-division multiplexing (OFDM) systems. Our approach uses a generalized multi-channel minimum variance principle to design an equalizing filterbank that preserves the desired signal components and suppresses the overall interference. Channel estimate is then obtained by deriving an asymptotically tight lower bound of the filterbank output power, which reduces the problem to a quadratic minimization. While a channel estimate may be obtained by directly maximizing the filterbank output power through multidimensional nonlinear searches, such an approach is computationally prohibitive and suffers local convergence. Numerical examples show that the proposed scheme approaches the Cramér-Rao bound (CRB) as the SNR increases. It also exhibits low sensitivity to unknown narrowband interference and compares favorably with a subspace blind channel estimator.

AB - This paper presents a blind joint channel and interference suppression for orthogonal frequency-division multiplexing (OFDM) systems. Our approach uses a generalized multi-channel minimum variance principle to design an equalizing filterbank that preserves the desired signal components and suppresses the overall interference. Channel estimate is then obtained by deriving an asymptotically tight lower bound of the filterbank output power, which reduces the problem to a quadratic minimization. While a channel estimate may be obtained by directly maximizing the filterbank output power through multidimensional nonlinear searches, such an approach is computationally prohibitive and suffers local convergence. Numerical examples show that the proposed scheme approaches the Cramér-Rao bound (CRB) as the SNR increases. It also exhibits low sensitivity to unknown narrowband interference and compares favorably with a subspace blind channel estimator.

UR - http://www.scopus.com/inward/record.url?scp=33646808984&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33646808984&partnerID=8YFLogxK

U2 - 10.1109/ICASSP.2005.1415747

DO - 10.1109/ICASSP.2005.1415747

M3 - Conference contribution

AN - SCOPUS:33646808984

SN - 0780388747

SN - 9780780388741

T3 - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings

BT - 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing,ICASSP '05 - Proceedings - Audio and ElectroacousticsSignal Processing for Communication

PB - Institute of Electrical and Electronics Engineers Inc.

ER -

Amleh K, Li H. Joint blind channel estimation and interference suppression for OFDM systems. In 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing,ICASSP '05 - Proceedings - Audio and ElectroacousticsSignal Processing for Communication. Institute of Electrical and Electronics Engineers Inc. 2005. 1415747. (ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings). https://doi.org/10.1109/ICASSP.2005.1415747