Kinetics of high-temperature B/O/H/C chemistry

R. A. Yetter, H. Rabitz, F. L. Dryer, R. C. Brown, C. E. Kolb

Research output: Contribution to journalArticle

91 Citations (Scopus)

Abstract

Homogeneous gas phase boron-oxygen-hydrogen-carbon (B/O/H/C) combustion chemistry is studied to characterize general mechanistic behavior of high-temperature (1800 K < T < 3000 K) B/O/H/C reacting systems and to identify critical reaction rate constants for future experimental evaluation. The chemistry is numerically modeled with a reaction mechanism comprising 19 chemical species and 58 forward and reverse elementary steps. Reaction flux/pathway techniques and sensitivity analysis theory of isothermal systems are used to identify the important reactions of the mechanism. The results include the effects of mixture temperature, pressure, oxygen content, hydrogen content, and carbon content on the reaction dynamics of B, BO, BO2, B2O2, B2O3, HBO, and HBO2. For example, hydrogen addition is observed to accelerate both the oxidation of intermediates and the heat release rate, as well as to alter the dominant suboxides and reaction products. From the sensitivity analysis calculations, a group of 14 key boron-containing reactions are identified and suggested for future elementary reaction studies. To date, only one of these reactions has been studied experimentally. Lastly, several important conclusions are drawn about the combustion process of particulate boron. For example, the current homogeneous calculations have shown that the sensitivity of the species concentration profiles to the chosen initial species speciation (for a fixed number of moles of each element) is nearly independent of this speciation for reaction times greater than a few microseconds, suggesting that the identity of the species evolving from a reacting boron particle is not eritical to the surrounding gas-phase combustion process. Furthermore, as noted above, hydrogen containing species have a significant impact on accelerating the gas-phase combustion. However, larger quantities of hydrogen promote the formation of HBO2, which is thermodynamically favored over gaseous B2O3 as the temperature is lowered. Consequently, as the combustion gases are cooled, gas-phase boron can be trapped as HBO2.

Original languageEnglish (US)
Pages (from-to)43-62
Number of pages20
JournalCombustion and Flame
Volume83
Issue number1-2
DOIs
StatePublished - Jan 1991

Fingerprint

Boron
Hydrogen
Gases
chemistry
Kinetics
boron
kinetics
vapor phases
hydrogen
Sensitivity analysis
Carbon
Temperature
sensitivity analysis
Oxygen
combustion chemistry
Reaction products
Reaction rates
Rate constants
carbon
oxygen

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Chemical Engineering(all)
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Physics and Astronomy(all)

Cite this

Yetter, R. A., Rabitz, H., Dryer, F. L., Brown, R. C., & Kolb, C. E. (1991). Kinetics of high-temperature B/O/H/C chemistry. Combustion and Flame, 83(1-2), 43-62. https://doi.org/10.1016/0010-2180(91)90202-M
Yetter, R. A. ; Rabitz, H. ; Dryer, F. L. ; Brown, R. C. ; Kolb, C. E. / Kinetics of high-temperature B/O/H/C chemistry. In: Combustion and Flame. 1991 ; Vol. 83, No. 1-2. pp. 43-62.
@article{fc73b77ab2cf4d479cfe4310b574d2ec,
title = "Kinetics of high-temperature B/O/H/C chemistry",
abstract = "Homogeneous gas phase boron-oxygen-hydrogen-carbon (B/O/H/C) combustion chemistry is studied to characterize general mechanistic behavior of high-temperature (1800 K < T < 3000 K) B/O/H/C reacting systems and to identify critical reaction rate constants for future experimental evaluation. The chemistry is numerically modeled with a reaction mechanism comprising 19 chemical species and 58 forward and reverse elementary steps. Reaction flux/pathway techniques and sensitivity analysis theory of isothermal systems are used to identify the important reactions of the mechanism. The results include the effects of mixture temperature, pressure, oxygen content, hydrogen content, and carbon content on the reaction dynamics of B, BO, BO2, B2O2, B2O3, HBO, and HBO2. For example, hydrogen addition is observed to accelerate both the oxidation of intermediates and the heat release rate, as well as to alter the dominant suboxides and reaction products. From the sensitivity analysis calculations, a group of 14 key boron-containing reactions are identified and suggested for future elementary reaction studies. To date, only one of these reactions has been studied experimentally. Lastly, several important conclusions are drawn about the combustion process of particulate boron. For example, the current homogeneous calculations have shown that the sensitivity of the species concentration profiles to the chosen initial species speciation (for a fixed number of moles of each element) is nearly independent of this speciation for reaction times greater than a few microseconds, suggesting that the identity of the species evolving from a reacting boron particle is not eritical to the surrounding gas-phase combustion process. Furthermore, as noted above, hydrogen containing species have a significant impact on accelerating the gas-phase combustion. However, larger quantities of hydrogen promote the formation of HBO2, which is thermodynamically favored over gaseous B2O3 as the temperature is lowered. Consequently, as the combustion gases are cooled, gas-phase boron can be trapped as HBO2.",
author = "Yetter, {R. A.} and H. Rabitz and Dryer, {F. L.} and Brown, {R. C.} and Kolb, {C. E.}",
year = "1991",
month = "1",
doi = "10.1016/0010-2180(91)90202-M",
language = "English (US)",
volume = "83",
pages = "43--62",
journal = "Combustion and Flame",
issn = "0010-2180",
publisher = "Elsevier Inc.",
number = "1-2",

}

Yetter, RA, Rabitz, H, Dryer, FL, Brown, RC & Kolb, CE 1991, 'Kinetics of high-temperature B/O/H/C chemistry', Combustion and Flame, vol. 83, no. 1-2, pp. 43-62. https://doi.org/10.1016/0010-2180(91)90202-M

Kinetics of high-temperature B/O/H/C chemistry. / Yetter, R. A.; Rabitz, H.; Dryer, F. L.; Brown, R. C.; Kolb, C. E.

In: Combustion and Flame, Vol. 83, No. 1-2, 01.1991, p. 43-62.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Kinetics of high-temperature B/O/H/C chemistry

AU - Yetter, R. A.

AU - Rabitz, H.

AU - Dryer, F. L.

AU - Brown, R. C.

AU - Kolb, C. E.

PY - 1991/1

Y1 - 1991/1

N2 - Homogeneous gas phase boron-oxygen-hydrogen-carbon (B/O/H/C) combustion chemistry is studied to characterize general mechanistic behavior of high-temperature (1800 K < T < 3000 K) B/O/H/C reacting systems and to identify critical reaction rate constants for future experimental evaluation. The chemistry is numerically modeled with a reaction mechanism comprising 19 chemical species and 58 forward and reverse elementary steps. Reaction flux/pathway techniques and sensitivity analysis theory of isothermal systems are used to identify the important reactions of the mechanism. The results include the effects of mixture temperature, pressure, oxygen content, hydrogen content, and carbon content on the reaction dynamics of B, BO, BO2, B2O2, B2O3, HBO, and HBO2. For example, hydrogen addition is observed to accelerate both the oxidation of intermediates and the heat release rate, as well as to alter the dominant suboxides and reaction products. From the sensitivity analysis calculations, a group of 14 key boron-containing reactions are identified and suggested for future elementary reaction studies. To date, only one of these reactions has been studied experimentally. Lastly, several important conclusions are drawn about the combustion process of particulate boron. For example, the current homogeneous calculations have shown that the sensitivity of the species concentration profiles to the chosen initial species speciation (for a fixed number of moles of each element) is nearly independent of this speciation for reaction times greater than a few microseconds, suggesting that the identity of the species evolving from a reacting boron particle is not eritical to the surrounding gas-phase combustion process. Furthermore, as noted above, hydrogen containing species have a significant impact on accelerating the gas-phase combustion. However, larger quantities of hydrogen promote the formation of HBO2, which is thermodynamically favored over gaseous B2O3 as the temperature is lowered. Consequently, as the combustion gases are cooled, gas-phase boron can be trapped as HBO2.

AB - Homogeneous gas phase boron-oxygen-hydrogen-carbon (B/O/H/C) combustion chemistry is studied to characterize general mechanistic behavior of high-temperature (1800 K < T < 3000 K) B/O/H/C reacting systems and to identify critical reaction rate constants for future experimental evaluation. The chemistry is numerically modeled with a reaction mechanism comprising 19 chemical species and 58 forward and reverse elementary steps. Reaction flux/pathway techniques and sensitivity analysis theory of isothermal systems are used to identify the important reactions of the mechanism. The results include the effects of mixture temperature, pressure, oxygen content, hydrogen content, and carbon content on the reaction dynamics of B, BO, BO2, B2O2, B2O3, HBO, and HBO2. For example, hydrogen addition is observed to accelerate both the oxidation of intermediates and the heat release rate, as well as to alter the dominant suboxides and reaction products. From the sensitivity analysis calculations, a group of 14 key boron-containing reactions are identified and suggested for future elementary reaction studies. To date, only one of these reactions has been studied experimentally. Lastly, several important conclusions are drawn about the combustion process of particulate boron. For example, the current homogeneous calculations have shown that the sensitivity of the species concentration profiles to the chosen initial species speciation (for a fixed number of moles of each element) is nearly independent of this speciation for reaction times greater than a few microseconds, suggesting that the identity of the species evolving from a reacting boron particle is not eritical to the surrounding gas-phase combustion process. Furthermore, as noted above, hydrogen containing species have a significant impact on accelerating the gas-phase combustion. However, larger quantities of hydrogen promote the formation of HBO2, which is thermodynamically favored over gaseous B2O3 as the temperature is lowered. Consequently, as the combustion gases are cooled, gas-phase boron can be trapped as HBO2.

UR - http://www.scopus.com/inward/record.url?scp=0026029656&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0026029656&partnerID=8YFLogxK

U2 - 10.1016/0010-2180(91)90202-M

DO - 10.1016/0010-2180(91)90202-M

M3 - Article

AN - SCOPUS:0026029656

VL - 83

SP - 43

EP - 62

JO - Combustion and Flame

JF - Combustion and Flame

SN - 0010-2180

IS - 1-2

ER -