Lab-scale experimental crosswind flight control system prototyping for an airborne wind energy system

Mitchell Cobb, Christopher Vermillion, Hosam Fathy

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

This paper presents an original experimental setup for controlling and measuring the crosswind flight of airborne wind energy systems in a laboratory environment. Execution of crosswind flight patterns, which is achieved in this work through the asymmetric motion of three tethers, enables dramatic increases in energy generation compared with stationary operation. Achievement of crosswind flight in the 1:100-scale experimental framework described herein allows for rapid, inexpensive, and dynamically scalable characterization of new control algorithms without recourse to expensive full-scale prototyping. This work is the first example of successful lab-scale control and measurement of crosswind motion for an airborne wind energy system. Specifically, this paper presents the experimental setup, crosswind flight control strategy, and experimental results for a model of the Altaeros Buoyant Airborne Turbine (BAT). The results demonstrate that crosswind flight control can achieve nearly 50 percent more power production then stationary operation, while also demonstrating the potential of the experimental framework for further algorithm development.

Original languageEnglish (US)
Title of host publicationAdvances in Control Design Methods, Nonlinear and Optimal Control, Robotics, and Wind Energy Systems; Aerospace Applications; Assistive and Rehabilitation Robotics; Assistive Robotics; Battery and Oil and Gas Systems; Bioengineering Applications; Biomedical and Neural Systems Modeling, Diagnostics and Healthcare; Control and Monitoring of Vibratory Systems; Diagnostics and Detection; Energy Harvesting; Estimation and Identification; Fuel Cells/Energy Storage; Intelligent Transportation
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791850695
DOIs
StatePublished - 2016
EventASME 2016 Dynamic Systems and Control Conference, DSCC 2016 - Minneapolis, United States
Duration: Oct 12 2016Oct 14 2016

Publication series

NameASME 2016 Dynamic Systems and Control Conference, DSCC 2016
Volume1

Other

OtherASME 2016 Dynamic Systems and Control Conference, DSCC 2016
CountryUnited States
CityMinneapolis
Period10/12/1610/14/16

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Industrial and Manufacturing Engineering
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Lab-scale experimental crosswind flight control system prototyping for an airborne wind energy system'. Together they form a unique fingerprint.

  • Cite this

    Cobb, M., Vermillion, C., & Fathy, H. (2016). Lab-scale experimental crosswind flight control system prototyping for an airborne wind energy system. In Advances in Control Design Methods, Nonlinear and Optimal Control, Robotics, and Wind Energy Systems; Aerospace Applications; Assistive and Rehabilitation Robotics; Assistive Robotics; Battery and Oil and Gas Systems; Bioengineering Applications; Biomedical and Neural Systems Modeling, Diagnostics and Healthcare; Control and Monitoring of Vibratory Systems; Diagnostics and Detection; Energy Harvesting; Estimation and Identification; Fuel Cells/Energy Storage; Intelligent Transportation (ASME 2016 Dynamic Systems and Control Conference, DSCC 2016; Vol. 1). American Society of Mechanical Engineers. https://doi.org/10.1115/DSCC2016-9737