Laser-beam and photon-assisted processed materials and their microstructures

Research output: Contribution to journalReview article

35 Citations (Scopus)

Abstract

Laser processing is a relatively new technique for modifying the near-surface region of materials without altering the in-bulk characteristics. A single laser can perform several functions by manipulating processing conditions such as laser power, beam diameter, and traverse speed. Lasers have shown attractive applications, such as cutting, welding, glazing, alloying, and cladding. A laser glazing process has demonstrated an improvement in the microstructure of vacuum plasma-coated copper-based alloys containing cavities, unmelted particles, and segregation. Laser glazing has also been shown to restore the degraded microstructure of components and make them equivalent to, or better than, the original wrought alloy. The laser cladding concept was used to develop nickel-based alloys for high-temperature applications that exhibited higher thermal stability than the nickel-based Rene-95 alloy. Rapid melting and quenching occurred during the laser glazing, alloying, and cladding processes resulting in a fine-grained microstructure, metastable phases and extended solid solubility of alloying additions in the matrix. Photon-assisted processing of material is a relatively new technique being explored to synthesize new materials from various substrates (solid, liquid, and gas). This process is successfully used to fabricate high-quality thin films for electronic industries. Thin films of multicomponents can be deposited with stoichiometric composition. Diamond thin films have been synthesized from liquid hydrocarbon (Benzene, C6H6) by laser-liquid hydrocarbon-substrate interaction. A laser-assisted physical vapour deposition process was found to be very successful in depositing stoichiometric compositions of multilayered thin films such as superconducting YBa2Cu3O7, ferroelectric Pb0.52Zr0.48TiO3 and other coatings such as TiN and CoSi2. This review reports some of the major advances in the understanding and engineering of new materials for electronic industries and high-temperature applications in the auto, aerospace, and turbine industries.

Original languageEnglish (US)
Pages (from-to)5232-5258
Number of pages27
JournalJournal of Materials Science
Volume29
Issue number20
DOIs
StatePublished - Oct 1 1994

Fingerprint

Laser beams
Photons
laser beams
microstructure
Microstructure
Lasers
photons
lasers
Alloying
industries
Thin films
alloying
High temperature applications
Electronics industry
Hydrocarbons
Nickel
thin films
Rene 95
Liquid lasers
Processing

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering

Cite this

@article{90f9e597a75b4dab9f114d235c0b6dce,
title = "Laser-beam and photon-assisted processed materials and their microstructures",
abstract = "Laser processing is a relatively new technique for modifying the near-surface region of materials without altering the in-bulk characteristics. A single laser can perform several functions by manipulating processing conditions such as laser power, beam diameter, and traverse speed. Lasers have shown attractive applications, such as cutting, welding, glazing, alloying, and cladding. A laser glazing process has demonstrated an improvement in the microstructure of vacuum plasma-coated copper-based alloys containing cavities, unmelted particles, and segregation. Laser glazing has also been shown to restore the degraded microstructure of components and make them equivalent to, or better than, the original wrought alloy. The laser cladding concept was used to develop nickel-based alloys for high-temperature applications that exhibited higher thermal stability than the nickel-based Rene-95 alloy. Rapid melting and quenching occurred during the laser glazing, alloying, and cladding processes resulting in a fine-grained microstructure, metastable phases and extended solid solubility of alloying additions in the matrix. Photon-assisted processing of material is a relatively new technique being explored to synthesize new materials from various substrates (solid, liquid, and gas). This process is successfully used to fabricate high-quality thin films for electronic industries. Thin films of multicomponents can be deposited with stoichiometric composition. Diamond thin films have been synthesized from liquid hydrocarbon (Benzene, C6H6) by laser-liquid hydrocarbon-substrate interaction. A laser-assisted physical vapour deposition process was found to be very successful in depositing stoichiometric compositions of multilayered thin films such as superconducting YBa2Cu3O7, ferroelectric Pb0.52Zr0.48TiO3 and other coatings such as TiN and CoSi2. This review reports some of the major advances in the understanding and engineering of new materials for electronic industries and high-temperature applications in the auto, aerospace, and turbine industries.",
author = "Jogender Singh",
year = "1994",
month = "10",
day = "1",
doi = "10.1007/BF01171533",
language = "English (US)",
volume = "29",
pages = "5232--5258",
journal = "Journal of Materials Science",
issn = "0022-2461",
publisher = "Springer Netherlands",
number = "20",

}

Laser-beam and photon-assisted processed materials and their microstructures. / Singh, Jogender.

In: Journal of Materials Science, Vol. 29, No. 20, 01.10.1994, p. 5232-5258.

Research output: Contribution to journalReview article

TY - JOUR

T1 - Laser-beam and photon-assisted processed materials and their microstructures

AU - Singh, Jogender

PY - 1994/10/1

Y1 - 1994/10/1

N2 - Laser processing is a relatively new technique for modifying the near-surface region of materials without altering the in-bulk characteristics. A single laser can perform several functions by manipulating processing conditions such as laser power, beam diameter, and traverse speed. Lasers have shown attractive applications, such as cutting, welding, glazing, alloying, and cladding. A laser glazing process has demonstrated an improvement in the microstructure of vacuum plasma-coated copper-based alloys containing cavities, unmelted particles, and segregation. Laser glazing has also been shown to restore the degraded microstructure of components and make them equivalent to, or better than, the original wrought alloy. The laser cladding concept was used to develop nickel-based alloys for high-temperature applications that exhibited higher thermal stability than the nickel-based Rene-95 alloy. Rapid melting and quenching occurred during the laser glazing, alloying, and cladding processes resulting in a fine-grained microstructure, metastable phases and extended solid solubility of alloying additions in the matrix. Photon-assisted processing of material is a relatively new technique being explored to synthesize new materials from various substrates (solid, liquid, and gas). This process is successfully used to fabricate high-quality thin films for electronic industries. Thin films of multicomponents can be deposited with stoichiometric composition. Diamond thin films have been synthesized from liquid hydrocarbon (Benzene, C6H6) by laser-liquid hydrocarbon-substrate interaction. A laser-assisted physical vapour deposition process was found to be very successful in depositing stoichiometric compositions of multilayered thin films such as superconducting YBa2Cu3O7, ferroelectric Pb0.52Zr0.48TiO3 and other coatings such as TiN and CoSi2. This review reports some of the major advances in the understanding and engineering of new materials for electronic industries and high-temperature applications in the auto, aerospace, and turbine industries.

AB - Laser processing is a relatively new technique for modifying the near-surface region of materials without altering the in-bulk characteristics. A single laser can perform several functions by manipulating processing conditions such as laser power, beam diameter, and traverse speed. Lasers have shown attractive applications, such as cutting, welding, glazing, alloying, and cladding. A laser glazing process has demonstrated an improvement in the microstructure of vacuum plasma-coated copper-based alloys containing cavities, unmelted particles, and segregation. Laser glazing has also been shown to restore the degraded microstructure of components and make them equivalent to, or better than, the original wrought alloy. The laser cladding concept was used to develop nickel-based alloys for high-temperature applications that exhibited higher thermal stability than the nickel-based Rene-95 alloy. Rapid melting and quenching occurred during the laser glazing, alloying, and cladding processes resulting in a fine-grained microstructure, metastable phases and extended solid solubility of alloying additions in the matrix. Photon-assisted processing of material is a relatively new technique being explored to synthesize new materials from various substrates (solid, liquid, and gas). This process is successfully used to fabricate high-quality thin films for electronic industries. Thin films of multicomponents can be deposited with stoichiometric composition. Diamond thin films have been synthesized from liquid hydrocarbon (Benzene, C6H6) by laser-liquid hydrocarbon-substrate interaction. A laser-assisted physical vapour deposition process was found to be very successful in depositing stoichiometric compositions of multilayered thin films such as superconducting YBa2Cu3O7, ferroelectric Pb0.52Zr0.48TiO3 and other coatings such as TiN and CoSi2. This review reports some of the major advances in the understanding and engineering of new materials for electronic industries and high-temperature applications in the auto, aerospace, and turbine industries.

UR - http://www.scopus.com/inward/record.url?scp=0028529186&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028529186&partnerID=8YFLogxK

U2 - 10.1007/BF01171533

DO - 10.1007/BF01171533

M3 - Review article

VL - 29

SP - 5232

EP - 5258

JO - Journal of Materials Science

JF - Journal of Materials Science

SN - 0022-2461

IS - 20

ER -