Late INa Blocker GS967 Supresses Polymorphic Ventricular Tachycardia in a Transgenic Rabbit Model of Long QT Type 2

Jungmin Hwang, Tae Yun Kim, Dmitry Terentyev, Mingwang Zhong, Anatoli Y. Kabakov, Peter Bronk, Karuppiah Arunachalam, Luiz Belardinelli, Sridharan Rajamani, Yukiko Kunitomo, Zachary Pfeiffer, Yichun Lu, Xuwen Peng, Katja E. Odening, Zhilin Qu, Alain Karma, Gideon Koren, Bum Rak Choi

Research output: Contribution to journalArticle

Abstract

BACKGROUND: Long QT syndrome has been associated with sudden cardiac death likely caused by early afterdepolarizations (EADs) and polymorphic ventricular tachycardias (PVTs). Suppressing the late sodium current (INaL) may counterbalance the reduced repolarization reserve in long QT syndrome and prevent EADs and PVTs. METHODS: We tested the effects of the selective INaL blocker GS967 on PVT induction in a transgenic rabbit model of long QT syndrome type 2 using intact heart optical mapping, cellular electrophysiology and confocal Ca2+ imaging, and computer modeling. RESULTS: GS967 reduced ventricular fibrillation induction under a rapid pacing protocol (n=7/14 hearts in control versus 1/14 hearts at 100 nmol/L) without altering action potential duration or restitution and dispersion. GS967 suppressed PVT incidences by reducing Ca2+-mediated EADs and focal activity during isoproterenol perfusion (at 30 nmol/L, n=7/12 and 100 nmol/L n=8/12 hearts without EADs and PVTs). Confocal Ca2+ imaging of long QT syndrome type 2 myocytes revealed that GS967 shortened Ca2+ transient duration via accelerating Na+/Ca2+ exchanger (INCX)-mediated Ca2+ efflux from cytosol, thereby reducing EADs. Computer modeling revealed that INaL potentiates EADs in the long QT syndrome type 2 setting through (1) providing additional depolarizing currents during action potential plateau phase, (2) increasing intracellular Na+ (Nai) that decreases the depolarizing INCX thereby suppressing the action potential plateau and delaying the activation of slowly activating delayed rectifier K+ channels (IKs), suggesting important roles of INaL in regulating Nai. CONCLUSIONS: Selective INaL blockade by GS967 prevents EADs and abolishes PVT in long QT syndrome type 2 rabbits by counterbalancing the reduced repolarization reserve and normalizing Nai. Graphic Abstract: A graphic abstract is available for this article.

Original languageEnglish (US)
Pages (from-to)e006875
JournalCirculation. Arrhythmia and electrophysiology
Volume13
Issue number8
DOIs
StatePublished - Aug 1 2020

All Science Journal Classification (ASJC) codes

  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Fingerprint Dive into the research topics of 'Late I<sub>Na</sub> Blocker GS967 Supresses Polymorphic Ventricular Tachycardia in a Transgenic Rabbit Model of Long QT Type 2'. Together they form a unique fingerprint.

  • Cite this

    Hwang, J., Kim, T. Y., Terentyev, D., Zhong, M., Kabakov, A. Y., Bronk, P., Arunachalam, K., Belardinelli, L., Rajamani, S., Kunitomo, Y., Pfeiffer, Z., Lu, Y., Peng, X., Odening, K. E., Qu, Z., Karma, A., Koren, G., & Choi, B. R. (2020). Late INa Blocker GS967 Supresses Polymorphic Ventricular Tachycardia in a Transgenic Rabbit Model of Long QT Type 2. Circulation. Arrhythmia and electrophysiology, 13(8), e006875. https://doi.org/10.1161/CIRCEP.118.006875