Late Paleocene to Eocene paleoceanography of the equatorial Pacific Ocean

Stable isotopes recorded at Ocean Drilling Program Site 865, Allison Guyot

Timothy Bralower, James C. Zachos, Ellen Thomas, Matthew Parrow, Charles K. Paull, D. Clay Kelly, Isabella Premoli Silva, William V. Sliter, Kyger C. Lohmann

Research output: Contribution to journalArticle

198 Citations (Scopus)

Abstract

An expanded and largely complete upper Paleocene to upper Eocene section was recovered from the pelagic cap overlying Allison Guyot, Mid‐Pacific Mountains at Ocean Drilling Program (ODP) Site 865 (18°26′N, 179°33′W; paleodepth 1300–1500 m). Reconstructions show that the site was within a few degrees of the equator during the Paleogene. Because no other Paleogene sections have been recovered in the Pacific Ocean at such a low latitude, Site 865 provides a unique record of equatorial Pacific paleoceanography. Detailed stable isotopic investigations were conducted on three planktonic foraminiferal taxa (species of Acarinina, Morozovella, and Subbotina). We studied benthic foraminiferal isotopes at much lower resolution on species of Cibicidoides and Lenticulina, Nuttallides truempyi and Gavelinella beccariiformis, because of their exceptional rarity. The δ18O and δ13C stratigraphies from Site 865 are generally similar to those derived from other Paleocene and Eocene sections. The planktonic foraminiferal records at Site 865, however, include significantly less short‐term, single‐sample variability than those from higher‐latitude sites, indicating that this tropical, oligotrophic location had a comparatively stable water column structure with a deep mixed layer and less seasonal variability. Low‐amplitude (0.1–0.8‰) oscillations on timescales of 250,000 to 300,000 years correlate between the δ13C records of all planktonic taxa and may represent fluctuations in the mixing intensity of surface waters. Peak sea surface temperatures of 24°–25°C occurred in the earliest Eocene, followed by a rapid cooling of 3–6°C in the late early Eocene. Temperatures remained cool and stable through the middle Eocene. in the late Eocene, surface water temperatures decreased further. Vertical temperature gradients decreased dramatically in the late Paleocene and were relatively constant through much of the Eocene but increased markedly in the late Eocene. Intermediate waters warmed through the late Paleocene, reaching a maximum temperature of 10°C in the early Eocene. Cooling in the middle and late Eocene paralleled that of surface waters, with latest Eocene temperatures below 5°C. Extinction patterns of benthic foraminifera in the latest Paleocene were similar to those observed at other Pacific sites and were coeval with a short‐term, very rapid negative excursion in δ13C values in planktonic and benthic taxa as at other sites. During this excursion, benthic foraminiferal δ18O values decreased markedly, indicating warming of 4 to 6°C for tropical intermediate waters, while planktonic taxa show slight warming (1°C) followed by 2°C of cooling. Convergence of δ18O values of planktonic and benthic foraminifera suggests that thermal gradients in the water column in this tropical location collapsed during the excursion. These data are consistent with the hypothesis that equatorial Pacific surface waters were a potential source of warm, higher salinity waters which filled portions of the deep ocean in the latest Paleocene. Oxygen isotopic data indicate that equator to high southern latitude sea surface thermal gradients decreased to as little as 4°C at the peak of the excursion, suggesting some fundamental change in global heat transport.

Original languageEnglish (US)
Pages (from-to)841-865
Number of pages25
JournalPaleoceanography
Volume10
Issue number4
DOIs
StatePublished - Jan 1 1995

Fingerprint

guyot
paleoceanography
Ocean Drilling Program
Paleocene
Eocene
stable isotope
ocean
surface water
intermediate water
benthic foraminifera
cooling
Paleogene
warming
water column
temperature
rarity
planktonic foraminifera
temperature gradient
mixed layer
sea surface

All Science Journal Classification (ASJC) codes

  • Oceanography
  • Palaeontology

Cite this

Bralower, Timothy ; Zachos, James C. ; Thomas, Ellen ; Parrow, Matthew ; Paull, Charles K. ; Kelly, D. Clay ; Silva, Isabella Premoli ; Sliter, William V. ; Lohmann, Kyger C. / Late Paleocene to Eocene paleoceanography of the equatorial Pacific Ocean : Stable isotopes recorded at Ocean Drilling Program Site 865, Allison Guyot. In: Paleoceanography. 1995 ; Vol. 10, No. 4. pp. 841-865.
@article{feab27f1b1e54bdd889ff3ed1dd09a8f,
title = "Late Paleocene to Eocene paleoceanography of the equatorial Pacific Ocean: Stable isotopes recorded at Ocean Drilling Program Site 865, Allison Guyot",
abstract = "An expanded and largely complete upper Paleocene to upper Eocene section was recovered from the pelagic cap overlying Allison Guyot, Mid‐Pacific Mountains at Ocean Drilling Program (ODP) Site 865 (18°26′N, 179°33′W; paleodepth 1300–1500 m). Reconstructions show that the site was within a few degrees of the equator during the Paleogene. Because no other Paleogene sections have been recovered in the Pacific Ocean at such a low latitude, Site 865 provides a unique record of equatorial Pacific paleoceanography. Detailed stable isotopic investigations were conducted on three planktonic foraminiferal taxa (species of Acarinina, Morozovella, and Subbotina). We studied benthic foraminiferal isotopes at much lower resolution on species of Cibicidoides and Lenticulina, Nuttallides truempyi and Gavelinella beccariiformis, because of their exceptional rarity. The δ18O and δ13C stratigraphies from Site 865 are generally similar to those derived from other Paleocene and Eocene sections. The planktonic foraminiferal records at Site 865, however, include significantly less short‐term, single‐sample variability than those from higher‐latitude sites, indicating that this tropical, oligotrophic location had a comparatively stable water column structure with a deep mixed layer and less seasonal variability. Low‐amplitude (0.1–0.8‰) oscillations on timescales of 250,000 to 300,000 years correlate between the δ13C records of all planktonic taxa and may represent fluctuations in the mixing intensity of surface waters. Peak sea surface temperatures of 24°–25°C occurred in the earliest Eocene, followed by a rapid cooling of 3–6°C in the late early Eocene. Temperatures remained cool and stable through the middle Eocene. in the late Eocene, surface water temperatures decreased further. Vertical temperature gradients decreased dramatically in the late Paleocene and were relatively constant through much of the Eocene but increased markedly in the late Eocene. Intermediate waters warmed through the late Paleocene, reaching a maximum temperature of 10°C in the early Eocene. Cooling in the middle and late Eocene paralleled that of surface waters, with latest Eocene temperatures below 5°C. Extinction patterns of benthic foraminifera in the latest Paleocene were similar to those observed at other Pacific sites and were coeval with a short‐term, very rapid negative excursion in δ13C values in planktonic and benthic taxa as at other sites. During this excursion, benthic foraminiferal δ18O values decreased markedly, indicating warming of 4 to 6°C for tropical intermediate waters, while planktonic taxa show slight warming (1°C) followed by 2°C of cooling. Convergence of δ18O values of planktonic and benthic foraminifera suggests that thermal gradients in the water column in this tropical location collapsed during the excursion. These data are consistent with the hypothesis that equatorial Pacific surface waters were a potential source of warm, higher salinity waters which filled portions of the deep ocean in the latest Paleocene. Oxygen isotopic data indicate that equator to high southern latitude sea surface thermal gradients decreased to as little as 4°C at the peak of the excursion, suggesting some fundamental change in global heat transport.",
author = "Timothy Bralower and Zachos, {James C.} and Ellen Thomas and Matthew Parrow and Paull, {Charles K.} and Kelly, {D. Clay} and Silva, {Isabella Premoli} and Sliter, {William V.} and Lohmann, {Kyger C.}",
year = "1995",
month = "1",
day = "1",
doi = "10.1029/95PA01143",
language = "English (US)",
volume = "10",
pages = "841--865",
journal = "Paleoceanography and Paleoclimatology",
issn = "0883-8305",
publisher = "American Geophysical Union",
number = "4",

}

Late Paleocene to Eocene paleoceanography of the equatorial Pacific Ocean : Stable isotopes recorded at Ocean Drilling Program Site 865, Allison Guyot. / Bralower, Timothy; Zachos, James C.; Thomas, Ellen; Parrow, Matthew; Paull, Charles K.; Kelly, D. Clay; Silva, Isabella Premoli; Sliter, William V.; Lohmann, Kyger C.

In: Paleoceanography, Vol. 10, No. 4, 01.01.1995, p. 841-865.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Late Paleocene to Eocene paleoceanography of the equatorial Pacific Ocean

T2 - Stable isotopes recorded at Ocean Drilling Program Site 865, Allison Guyot

AU - Bralower, Timothy

AU - Zachos, James C.

AU - Thomas, Ellen

AU - Parrow, Matthew

AU - Paull, Charles K.

AU - Kelly, D. Clay

AU - Silva, Isabella Premoli

AU - Sliter, William V.

AU - Lohmann, Kyger C.

PY - 1995/1/1

Y1 - 1995/1/1

N2 - An expanded and largely complete upper Paleocene to upper Eocene section was recovered from the pelagic cap overlying Allison Guyot, Mid‐Pacific Mountains at Ocean Drilling Program (ODP) Site 865 (18°26′N, 179°33′W; paleodepth 1300–1500 m). Reconstructions show that the site was within a few degrees of the equator during the Paleogene. Because no other Paleogene sections have been recovered in the Pacific Ocean at such a low latitude, Site 865 provides a unique record of equatorial Pacific paleoceanography. Detailed stable isotopic investigations were conducted on three planktonic foraminiferal taxa (species of Acarinina, Morozovella, and Subbotina). We studied benthic foraminiferal isotopes at much lower resolution on species of Cibicidoides and Lenticulina, Nuttallides truempyi and Gavelinella beccariiformis, because of their exceptional rarity. The δ18O and δ13C stratigraphies from Site 865 are generally similar to those derived from other Paleocene and Eocene sections. The planktonic foraminiferal records at Site 865, however, include significantly less short‐term, single‐sample variability than those from higher‐latitude sites, indicating that this tropical, oligotrophic location had a comparatively stable water column structure with a deep mixed layer and less seasonal variability. Low‐amplitude (0.1–0.8‰) oscillations on timescales of 250,000 to 300,000 years correlate between the δ13C records of all planktonic taxa and may represent fluctuations in the mixing intensity of surface waters. Peak sea surface temperatures of 24°–25°C occurred in the earliest Eocene, followed by a rapid cooling of 3–6°C in the late early Eocene. Temperatures remained cool and stable through the middle Eocene. in the late Eocene, surface water temperatures decreased further. Vertical temperature gradients decreased dramatically in the late Paleocene and were relatively constant through much of the Eocene but increased markedly in the late Eocene. Intermediate waters warmed through the late Paleocene, reaching a maximum temperature of 10°C in the early Eocene. Cooling in the middle and late Eocene paralleled that of surface waters, with latest Eocene temperatures below 5°C. Extinction patterns of benthic foraminifera in the latest Paleocene were similar to those observed at other Pacific sites and were coeval with a short‐term, very rapid negative excursion in δ13C values in planktonic and benthic taxa as at other sites. During this excursion, benthic foraminiferal δ18O values decreased markedly, indicating warming of 4 to 6°C for tropical intermediate waters, while planktonic taxa show slight warming (1°C) followed by 2°C of cooling. Convergence of δ18O values of planktonic and benthic foraminifera suggests that thermal gradients in the water column in this tropical location collapsed during the excursion. These data are consistent with the hypothesis that equatorial Pacific surface waters were a potential source of warm, higher salinity waters which filled portions of the deep ocean in the latest Paleocene. Oxygen isotopic data indicate that equator to high southern latitude sea surface thermal gradients decreased to as little as 4°C at the peak of the excursion, suggesting some fundamental change in global heat transport.

AB - An expanded and largely complete upper Paleocene to upper Eocene section was recovered from the pelagic cap overlying Allison Guyot, Mid‐Pacific Mountains at Ocean Drilling Program (ODP) Site 865 (18°26′N, 179°33′W; paleodepth 1300–1500 m). Reconstructions show that the site was within a few degrees of the equator during the Paleogene. Because no other Paleogene sections have been recovered in the Pacific Ocean at such a low latitude, Site 865 provides a unique record of equatorial Pacific paleoceanography. Detailed stable isotopic investigations were conducted on three planktonic foraminiferal taxa (species of Acarinina, Morozovella, and Subbotina). We studied benthic foraminiferal isotopes at much lower resolution on species of Cibicidoides and Lenticulina, Nuttallides truempyi and Gavelinella beccariiformis, because of their exceptional rarity. The δ18O and δ13C stratigraphies from Site 865 are generally similar to those derived from other Paleocene and Eocene sections. The planktonic foraminiferal records at Site 865, however, include significantly less short‐term, single‐sample variability than those from higher‐latitude sites, indicating that this tropical, oligotrophic location had a comparatively stable water column structure with a deep mixed layer and less seasonal variability. Low‐amplitude (0.1–0.8‰) oscillations on timescales of 250,000 to 300,000 years correlate between the δ13C records of all planktonic taxa and may represent fluctuations in the mixing intensity of surface waters. Peak sea surface temperatures of 24°–25°C occurred in the earliest Eocene, followed by a rapid cooling of 3–6°C in the late early Eocene. Temperatures remained cool and stable through the middle Eocene. in the late Eocene, surface water temperatures decreased further. Vertical temperature gradients decreased dramatically in the late Paleocene and were relatively constant through much of the Eocene but increased markedly in the late Eocene. Intermediate waters warmed through the late Paleocene, reaching a maximum temperature of 10°C in the early Eocene. Cooling in the middle and late Eocene paralleled that of surface waters, with latest Eocene temperatures below 5°C. Extinction patterns of benthic foraminifera in the latest Paleocene were similar to those observed at other Pacific sites and were coeval with a short‐term, very rapid negative excursion in δ13C values in planktonic and benthic taxa as at other sites. During this excursion, benthic foraminiferal δ18O values decreased markedly, indicating warming of 4 to 6°C for tropical intermediate waters, while planktonic taxa show slight warming (1°C) followed by 2°C of cooling. Convergence of δ18O values of planktonic and benthic foraminifera suggests that thermal gradients in the water column in this tropical location collapsed during the excursion. These data are consistent with the hypothesis that equatorial Pacific surface waters were a potential source of warm, higher salinity waters which filled portions of the deep ocean in the latest Paleocene. Oxygen isotopic data indicate that equator to high southern latitude sea surface thermal gradients decreased to as little as 4°C at the peak of the excursion, suggesting some fundamental change in global heat transport.

UR - http://www.scopus.com/inward/record.url?scp=0029503661&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029503661&partnerID=8YFLogxK

U2 - 10.1029/95PA01143

DO - 10.1029/95PA01143

M3 - Article

VL - 10

SP - 841

EP - 865

JO - Paleoceanography and Paleoclimatology

JF - Paleoceanography and Paleoclimatology

SN - 0883-8305

IS - 4

ER -