Latent inhibition of cued fear conditioning: An NMDA receptor-dependent process that can be established in the presence of anisomycin

Michael C. Lewis, Thomas J. Gould

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

Much of the research examining the biological basis for long-term memories has focused on mechanisms that support the formation of conditioned associations. Less information is available on biological mechanisms which underlie processes that modify the strength of conditioned associations. Latent inhibition is a phenomenon by which pre-exposure to a to-be-conditioned stimulus (CS) weakens subsequent conditioning of that CS to an unconditioned stimulus (US). Here we report that latent inhibition of cued fear conditioning is dependent on NMDA receptor activation. MK-801 (1 mg/kg), an NMDA receptor antagonist, abolished latent inhibition of cued fear conditioning. This dose of MK-801 administered before training did not disrupt cued fear conditioning. Conversely, anisomycin (150 mg/kg), a protein synthesis inhibitor, had no effect on latent inhibition of cued fear conditioning when administered 20 min before, immediately after, or 2, 4, 6, or 8 h after CS pre-exposure. Furthermore, continuous anisomycin administration (50 mg/kg, administered every 2 h for 6 h starting 20 min prior to pre-exposure) did not disrupt latent inhibition of cued fear conditioning. In addition, anisomycin had no effect on a long-lasting version of latent inhibition of cued fear conditioning that was maintained over a 7-day interval. Anisomycin administered before training, however, disrupted learning of the CS-US association. These findings suggest that latent inhibition of cued fear conditioning is a long-lasting NMDA receptor-dependent process that can develop during the inhibition of protein synthesis.

Original languageEnglish (US)
Pages (from-to)818-826
Number of pages9
JournalEuropean Journal of Neuroscience
Volume20
Issue number3
DOIs
StatePublished - Aug 1 2004

Fingerprint

Anisomycin
N-Methyl-D-Aspartate Receptors
Fear
Dizocilpine Maleate
Protein Synthesis Inhibitors
Long-Term Memory
Conditioning (Psychology)
Inhibition (Psychology)
Learning

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)

Cite this

@article{29c7f77be08b4beeb0ea69c1db694acb,
title = "Latent inhibition of cued fear conditioning: An NMDA receptor-dependent process that can be established in the presence of anisomycin",
abstract = "Much of the research examining the biological basis for long-term memories has focused on mechanisms that support the formation of conditioned associations. Less information is available on biological mechanisms which underlie processes that modify the strength of conditioned associations. Latent inhibition is a phenomenon by which pre-exposure to a to-be-conditioned stimulus (CS) weakens subsequent conditioning of that CS to an unconditioned stimulus (US). Here we report that latent inhibition of cued fear conditioning is dependent on NMDA receptor activation. MK-801 (1 mg/kg), an NMDA receptor antagonist, abolished latent inhibition of cued fear conditioning. This dose of MK-801 administered before training did not disrupt cued fear conditioning. Conversely, anisomycin (150 mg/kg), a protein synthesis inhibitor, had no effect on latent inhibition of cued fear conditioning when administered 20 min before, immediately after, or 2, 4, 6, or 8 h after CS pre-exposure. Furthermore, continuous anisomycin administration (50 mg/kg, administered every 2 h for 6 h starting 20 min prior to pre-exposure) did not disrupt latent inhibition of cued fear conditioning. In addition, anisomycin had no effect on a long-lasting version of latent inhibition of cued fear conditioning that was maintained over a 7-day interval. Anisomycin administered before training, however, disrupted learning of the CS-US association. These findings suggest that latent inhibition of cued fear conditioning is a long-lasting NMDA receptor-dependent process that can develop during the inhibition of protein synthesis.",
author = "Lewis, {Michael C.} and Gould, {Thomas J.}",
year = "2004",
month = "8",
day = "1",
doi = "10.1111/j.1460-9568.2004.03531.x",
language = "English (US)",
volume = "20",
pages = "818--826",
journal = "European Journal of Neuroscience",
issn = "0953-816X",
publisher = "Wiley-Blackwell",
number = "3",

}

TY - JOUR

T1 - Latent inhibition of cued fear conditioning

T2 - An NMDA receptor-dependent process that can be established in the presence of anisomycin

AU - Lewis, Michael C.

AU - Gould, Thomas J.

PY - 2004/8/1

Y1 - 2004/8/1

N2 - Much of the research examining the biological basis for long-term memories has focused on mechanisms that support the formation of conditioned associations. Less information is available on biological mechanisms which underlie processes that modify the strength of conditioned associations. Latent inhibition is a phenomenon by which pre-exposure to a to-be-conditioned stimulus (CS) weakens subsequent conditioning of that CS to an unconditioned stimulus (US). Here we report that latent inhibition of cued fear conditioning is dependent on NMDA receptor activation. MK-801 (1 mg/kg), an NMDA receptor antagonist, abolished latent inhibition of cued fear conditioning. This dose of MK-801 administered before training did not disrupt cued fear conditioning. Conversely, anisomycin (150 mg/kg), a protein synthesis inhibitor, had no effect on latent inhibition of cued fear conditioning when administered 20 min before, immediately after, or 2, 4, 6, or 8 h after CS pre-exposure. Furthermore, continuous anisomycin administration (50 mg/kg, administered every 2 h for 6 h starting 20 min prior to pre-exposure) did not disrupt latent inhibition of cued fear conditioning. In addition, anisomycin had no effect on a long-lasting version of latent inhibition of cued fear conditioning that was maintained over a 7-day interval. Anisomycin administered before training, however, disrupted learning of the CS-US association. These findings suggest that latent inhibition of cued fear conditioning is a long-lasting NMDA receptor-dependent process that can develop during the inhibition of protein synthesis.

AB - Much of the research examining the biological basis for long-term memories has focused on mechanisms that support the formation of conditioned associations. Less information is available on biological mechanisms which underlie processes that modify the strength of conditioned associations. Latent inhibition is a phenomenon by which pre-exposure to a to-be-conditioned stimulus (CS) weakens subsequent conditioning of that CS to an unconditioned stimulus (US). Here we report that latent inhibition of cued fear conditioning is dependent on NMDA receptor activation. MK-801 (1 mg/kg), an NMDA receptor antagonist, abolished latent inhibition of cued fear conditioning. This dose of MK-801 administered before training did not disrupt cued fear conditioning. Conversely, anisomycin (150 mg/kg), a protein synthesis inhibitor, had no effect on latent inhibition of cued fear conditioning when administered 20 min before, immediately after, or 2, 4, 6, or 8 h after CS pre-exposure. Furthermore, continuous anisomycin administration (50 mg/kg, administered every 2 h for 6 h starting 20 min prior to pre-exposure) did not disrupt latent inhibition of cued fear conditioning. In addition, anisomycin had no effect on a long-lasting version of latent inhibition of cued fear conditioning that was maintained over a 7-day interval. Anisomycin administered before training, however, disrupted learning of the CS-US association. These findings suggest that latent inhibition of cued fear conditioning is a long-lasting NMDA receptor-dependent process that can develop during the inhibition of protein synthesis.

UR - http://www.scopus.com/inward/record.url?scp=3843102795&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=3843102795&partnerID=8YFLogxK

U2 - 10.1111/j.1460-9568.2004.03531.x

DO - 10.1111/j.1460-9568.2004.03531.x

M3 - Article

C2 - 15255992

AN - SCOPUS:3843102795

VL - 20

SP - 818

EP - 826

JO - European Journal of Neuroscience

JF - European Journal of Neuroscience

SN - 0953-816X

IS - 3

ER -