Latin cubes of order ≤5

Gary Lee Mullen, Robert E. Weber

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

If cn represents the number of reduced Latin cubes of order n then c1 = c2 = c3 = 1, c4 = 64 and c5 = 40246. Moreover if λn and λ′n denote the number of disjoint isomorphism and isotopy classes of reduced Latin cubes of order n respectively, then λn = λ′n = 1 for n ≤ 3 while λ4 = 19, λ′4 = 12, and λ5 = 1860.

Original languageEnglish (US)
Pages (from-to)291-297
Number of pages7
JournalDiscrete Mathematics
Volume32
Issue number3
DOIs
StatePublished - Jan 1 1980

Fingerprint

Regular hexahedron
Isotopy
Isomorphism
Disjoint
Denote
Class

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Discrete Mathematics and Combinatorics

Cite this

Mullen, Gary Lee ; Weber, Robert E. / Latin cubes of order ≤5. In: Discrete Mathematics. 1980 ; Vol. 32, No. 3. pp. 291-297.
@article{1ef4f8b9429d472ca437a2436d9de291,
title = "Latin cubes of order ≤5",
abstract = "If cn represents the number of reduced Latin cubes of order n then c1 = c2 = c3 = 1, c4 = 64 and c5 = 40246. Moreover if λn and λ′n denote the number of disjoint isomorphism and isotopy classes of reduced Latin cubes of order n respectively, then λn = λ′n = 1 for n ≤ 3 while λ4 = 19, λ′4 = 12, and λ5 = 1860.",
author = "Mullen, {Gary Lee} and Weber, {Robert E.}",
year = "1980",
month = "1",
day = "1",
doi = "10.1016/0012-365X(80)90267-8",
language = "English (US)",
volume = "32",
pages = "291--297",
journal = "Discrete Mathematics",
issn = "0012-365X",
publisher = "Elsevier",
number = "3",

}

Latin cubes of order ≤5. / Mullen, Gary Lee; Weber, Robert E.

In: Discrete Mathematics, Vol. 32, No. 3, 01.01.1980, p. 291-297.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Latin cubes of order ≤5

AU - Mullen, Gary Lee

AU - Weber, Robert E.

PY - 1980/1/1

Y1 - 1980/1/1

N2 - If cn represents the number of reduced Latin cubes of order n then c1 = c2 = c3 = 1, c4 = 64 and c5 = 40246. Moreover if λn and λ′n denote the number of disjoint isomorphism and isotopy classes of reduced Latin cubes of order n respectively, then λn = λ′n = 1 for n ≤ 3 while λ4 = 19, λ′4 = 12, and λ5 = 1860.

AB - If cn represents the number of reduced Latin cubes of order n then c1 = c2 = c3 = 1, c4 = 64 and c5 = 40246. Moreover if λn and λ′n denote the number of disjoint isomorphism and isotopy classes of reduced Latin cubes of order n respectively, then λn = λ′n = 1 for n ≤ 3 while λ4 = 19, λ′4 = 12, and λ5 = 1860.

UR - http://www.scopus.com/inward/record.url?scp=0039860078&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0039860078&partnerID=8YFLogxK

U2 - 10.1016/0012-365X(80)90267-8

DO - 10.1016/0012-365X(80)90267-8

M3 - Article

AN - SCOPUS:0039860078

VL - 32

SP - 291

EP - 297

JO - Discrete Mathematics

JF - Discrete Mathematics

SN - 0012-365X

IS - 3

ER -