Light-activated room-temperature gas sensors based on metal oxide nanostructures: A review on recent advances

Jing Wang, Huchi Shen, Yi Xia, Sridhar Komarneni

Research output: Contribution to journalReview articlepeer-review

8 Scopus citations

Abstract

Many recent efforts are directed toward developing high-performance gas sensors based on metal oxide nanostructures operating at room temperature, as it lowers the power consumption, simplifies the device fabrication as well as improves the safety and stability of the sensors. The light-activated gas sensing technology was intensively studied because of its high effectiveness in improving the gas sensing performance of metal oxide nanostrctures at room temperature. This review is covers comprehensive advances in the emerging and feasible approaches for improving nanostructured metal oxide-based gas sensors by light activation, especially the progresses made in the last five years. We first summarize the effects of light-activation on gas sensing behavior of metal oxide nanostructures with some new insights into the related mechanisms. For enhancing the light-activated gas-sensing performance some possible strategies are then introduced, which include the modification of the size, dimension, nanoarchitecture, porous or hierarchical structure and doping or defect engineering, as well as the construction of nanocomposite sensing materials. Finally, some recent developments in light source and device structure design towards low power gas sensor systems are discussed. We hope that this review would provide some useful information to the design of light-activated metal oxide gas sensors operating at room temperature.

Original languageEnglish (US)
Pages (from-to)7353-7368
Number of pages16
JournalCeramics International
Volume47
Issue number6
DOIs
StatePublished - Mar 15 2021

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites
  • Process Chemistry and Technology
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Light-activated room-temperature gas sensors based on metal oxide nanostructures: A review on recent advances'. Together they form a unique fingerprint.

Cite this