Lignin peroxidase of Phanerochaete chrysosporium. Evidence for an acidic ionization controlling activity

D. Cai, M. Tien

Research output: Contribution to journalArticlepeer-review

17 Scopus citations


The active site amino acid residues of lignin peroxidase are homologous to those of other peroxidases; however, in contrast to other peroxidases, no pH dependence is observed for the reaction of ferric lignin peroxidase with H2O2 to form compound I (Andrawis, A., Johnson, K.A., and Tien, M. (1988) J. Biol. Chem. 263, 1195-1198). Chloride binding is used in the present study to investigate this reaction further. Chloride binds to lignin peroxidase at the same site as cyanide and hydrogen peroxide. This is indicated by the following. 1) Chloride competes with cyanide in binding to lignin peroxidase. 2) Chloride is a competitive inhibitor of lignin peroxidase with respect to H2O2. The inhibition constant (K(i)) is equal to the dissociation constant (K(d)) of chloride at all pH values studied. Chloride binding is pH dependent: chloride binds only to the protonated form of lignin peroxidase. Transient-state kinetic studies demonstrate that chloride inhibits lignin peroxidase compound I formation in a pH-dependent manner with maximum inhibition at low pH. An apparent pK(a) was calculated at each chloride concentration; the pK(a) increased as the chloride concentration increased. Extrapolation to zero chloride concentration allowed us to estimate the intrinsic pK(a) for the ionization in the lignin peroxidase active site. The results reported here provide evidence that an acidic ionizable group (pK(a) ~ 1) at the active site controls both lignin peroxidase compound I formation and chloride binding. We propose that the mechanism for lignin peroxidase compound I formation is similar to that of other peroxidases in that it requires the deprotonated form of an ionizable group near the active site.

Original languageEnglish (US)
Pages (from-to)14464-14469
Number of pages6
JournalJournal of Biological Chemistry
Issue number22
StatePublished - 1991

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'Lignin peroxidase of Phanerochaete chrysosporium. Evidence for an acidic ionization controlling activity'. Together they form a unique fingerprint.

Cite this