Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR

Xue Kang, Alex Kirui, Malitha C. Dickwella Widanage, Frederic Mentink-Vigier, Daniel J. Cosgrove, Tuo Wang

Research output: Contribution to journalArticle

55 Scopus citations

Abstract

Lignin is a complex aromatic biopolymer that strengthens and waterproofs plant secondary cell walls, enabling mechanical stability in trees and long-distance water transport in xylem. Lignin removal is a key step in paper production and biomass conversion to biofuels, motivating efforts to re-engineer lignin biosynthesis. However, the physical nature of lignin’s interactions with wall polysaccharides is not well understood. Here we show that lignin self-aggregates to form highly hydrophobic and dynamically unique nanodomains, with extensive surface contacts to xylan. Solid-state NMR spectroscopy of intact maize stems, supported by dynamic nuclear polarization, reveals that lignin has abundant electrostatic interactions with the polar motifs of xylan. Lignin preferentially binds xylans with 3-fold or distorted 2-fold helical screw conformations, indicative of xylans not closely associated with cellulose. These findings advance our knowledge of the molecular-level organization of lignocellulosic biomass, providing the structural foundation for optimization of post-harvest processing for biofuels and biomaterials.

Original languageEnglish (US)
Article number347
JournalNature communications
Volume10
Issue number1
DOIs
StatePublished - Dec 1 2019

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR'. Together they form a unique fingerprint.

  • Cite this