Limitations of quantum coset states for graph isomorphism

Sean Hallgren, Cristopher Moore, Martin Rötteler, Alexander Russell, Pranab Sen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

39 Scopus citations

Abstract

It has been known for some time that graph isomorphism reduces to the hidden subgroup problem (HSP). What is more, most exponential speedups in quantum computation are obtained by solving instances of the HSP. A common feature of the resulting algorithms is the use of quantum coset states, which encode the hidden subgroup. An open question has been how hard it is to use these states to solve graph isomorphism. It was recently shown by Moore, Russell, and Schulman [30] that only an exponentially small amount of information is available from one, or a pair of coset states. A potential source of power to exploit are entangled quantum measurements that act jointly on many states at once. We show that entangled quantum measurements on at least Ω(n log n) coset states are necessary to get useful informer tion for the case of graph isomorphism, matching an information theoretic upper bound. This may be viewed as a negative result because highly entangled measurements seem hard to implement in general. Our main theorem is very general and also rules out using joint measurements on few coset states for some other groups, such as GL(n, Fpm) and Gn where G is finite and satisfies a suitable property.

Original languageEnglish (US)
Title of host publicationSTOC'06
Subtitle of host publicationProceedings of the 38th Annual ACM Symposium on Theory of Computing
PublisherAssociation for Computing Machinery
Pages604-617
Number of pages14
ISBN (Print)1595931341, 9781595931344
DOIs
StatePublished - 2006
Event38th Annual ACM Symposium on Theory of Computing, STOC'06 - Seattle, WA, United States
Duration: May 21 2006May 23 2006

Publication series

NameProceedings of the Annual ACM Symposium on Theory of Computing
Volume2006
ISSN (Print)0737-8017

Other

Other38th Annual ACM Symposium on Theory of Computing, STOC'06
Country/TerritoryUnited States
CitySeattle, WA
Period5/21/065/23/06

All Science Journal Classification (ASJC) codes

  • Software

Fingerprint

Dive into the research topics of 'Limitations of quantum coset states for graph isomorphism'. Together they form a unique fingerprint.

Cite this