Line formation in microturbulent magnetic fields

H. Domke, G. G. Pavlov

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

The formation of Zeeman lines in Gaussian microturbulent magnetic fields is considered assuming LTE. General formulae are derived for the local mean values of the transfer matrix elements. The cases of one-dimensional (longitudinal), isotropic, and two-dimensional (transversal) magnetic microturbulence are studied in some detail. Asymptotic formulae are given for small mean as well as for small microturbulent magnetic fields. Characteristic effects of magnetic microturbulence on the transfer coefficients are: (i) the broadening of the frequency contours, although only for the case of longitudinal Zeeman effect and longitudinal magnetic microturbulence this effect can be described analogous to Doppler broadening, (ii) the appearance of a pseudo-Zeeman structure for nonlongitudinal magnetic microturbulence, (iii) the reduction of maximal values of circular polarization, and (iv) the appearance of characteristic linear polarization effects due to the anisotropy of the magnetic microturbulence. Line contours and polarization of Zeeman triplets are computed for Milne-Edddington atmospheres. It is shown that magnetic intensification due to microturbulent magnetic fields may be much more efficient than that due to regular fields. The gravity center of a Zeeman line observed in circularly polarized light remains a reasonable measure of the line of sight component of the mean magnetic field for a line strength 47-1. For saturated lines, the gravity center distance depends significantly on the magnetic microturbulence and its anisotropy. The influence of magnetic microturbulence on the ratio of longitudinal field magnetographic signals shows that unique conclusions about the magnetic microstructure can be drawn from the line ratio measurement only in combination with further spectroscopic data or physical reasoning.

Original languageEnglish (US)
Pages (from-to)47-75
Number of pages29
JournalAstrophysics and Space Science
Volume66
Issue number1
DOIs
StatePublished - Nov 1979

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'Line formation in microturbulent magnetic fields'. Together they form a unique fingerprint.

Cite this